Laboratory of Proteomics and Metabolomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznań, Poland.
Chembiochem. 2012 Sep 3;13(13):1846-59. doi: 10.1002/cbic.201200086. Epub 2012 Jul 16.
Biosynthesis of antimicrobial secondary metabolites in response to microbial infection is one of the features of the plant immune system. Particular classes of plant secondary metabolites involved in plant defence are often produced only by species belonging to certain phylogenetic clades. Brassicaceae plants have evolved the ability to synthesise a wide range of sulfur-containing secondary metabolites, including glucosinolates and indole-type phytoalexins. A subset of these compounds is produced by the model plant Arabidopsis thaliana. Genetic tools available for this species enabled verification of immune functions of glucosinolates and camalexin (A. thaliana phytoalexin), as well as characterisation of their respective biosynthetic pathways. Current knowledge of the biosynthesis of Brassicaceae sulfur-containing metabolites suggests that the key event in the evolution of these compounds is the acquisition of biochemical mechanisms originating from detoxification pathways into secondary metabolite biosynthesis. Moreover, it is likely that glucosinolates and Brassicaceae phytoalexins, traditionally considered as separate groups of compounds, have a common evolutionary origin and are interconnected on the biosynthetic level. This suggests that the diversity of Brassicaceae sulfur-containing phytochemicals reflect phylogenetic clade-specific branches of an ancient biosynthetic pathway.
植物免疫系统的一个特征是,针对微生物感染合成抗菌性次级代谢产物。参与植物防御的特定次级代谢产物类别通常仅由属于某些系统发育分支的物种产生。十字花科植物已经进化出合成各种含硫次级代谢产物的能力,包括硫代葡萄糖苷和吲哚型植物抗毒素。这些化合物的亚类由模式植物拟南芥产生。该物种可用的遗传工具使验证硫代葡萄糖苷和油菜素内酯(拟南芥植物抗毒素)的免疫功能以及鉴定它们各自的生物合成途径成为可能。目前对十字花科含硫代谢物生物合成的了解表明,这些化合物进化的关键事件是将源自解毒途径的生化机制获取到次级代谢物生物合成中。此外,硫代葡萄糖苷和十字花科植物抗毒素可能被认为是两个独立的化合物群,但它们具有共同的进化起源,并且在生物合成水平上相互关联。这表明,十字花科含硫植物化学物质的多样性反映了古老生物合成途径中特定于系统发育分支的分支。