Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Jalan Yaíacob Latiff, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia.
Sci Rep. 2022 Aug 15;12(1):13829. doi: 10.1038/s41598-022-18068-0.
Sulfur is an essential element required for plant growth and development, physiological processes and stress responses. Sulfur-encoding biosynthetic genes are involved in the primary sulfur assimilation pathway, regulating various mechanisms at the gene, cellular and system levels, and in the biosynthesis of sulfur-containing compounds (SCCs). In this study, the SCC-encoding biosynthetic genes in rice were identified using a sulfur-dependent model plant, the Arabidopsis. A total of 139 AtSCC from Arabidopsis were used as reference sequences in search of putative rice SCCs. At similarity index > 30%, the similarity search against Arabidopsis SCC query sequences identified 665 putative OsSCC genes in rice. The gene synteny analysis showed a total of 477 syntenic gene pairs comprised of 89 AtSCC and 265 OsSCC biosynthetic genes in Arabidopsis and rice, respectively. Phylogenetic tree of the collated (AtSCCs and OsSCCs) SCC-encoding biosynthetic genes were divided into 11 different clades of various sizes comprised of branches of subclades. In clade 1, nearing equal representation of OsSCC and AtSCC biosynthetic genes imply the most ancestral lineage. A total of 25 candidate Arabidopsis SCC homologs were identified in rice. The gene ontology enrichment analysis showed that the rice-Arabidopsis SCC homologs were significantly enriched in the following terms at false discovery rate (FDR) < 0.05: (i) biological process; sulfur compound metabolic process and organic acid metabolic processes, (ii) molecular function; oxidoreductase activity, acting on paired donors with incorporation or reduction of molecular oxygen and (iii) KEGG pathway; metabolic pathways and biosynthesis of secondary metabolites. At less than five duplicated blocks of separation, no tandem duplications were observed among the SCC biosynthetic genes distributed in rice chromosomes. The comprehensive rice SCC gene description entailing syntenic events with Arabidopsis, motif distribution and chromosomal mapping of the present findings offer a foundation for rice SCC gene functional studies and advanced strategic rice breeding.
硫是植物生长发育、生理过程和应激反应所必需的元素。编码生物合成的硫基因参与初级硫同化途径,调控基因、细胞和系统水平的各种机制,以及含硫化合物(SCCs)的生物合成。在这项研究中,利用依赖硫的模式植物拟南芥,鉴定了水稻中的 SCC 编码生物合成基因。总共使用了 139 个来自拟南芥的 AtSCC 作为参考序列,以搜索水稻中潜在的 SCC。在相似度指数 > 30%的情况下,对拟南芥 SCC 查询序列的相似性搜索鉴定了水稻中 665 个潜在的 OsSCC 基因。基因同线性分析显示,在拟南芥和水稻中,分别有 89 个 AtSCC 和 265 个 OsSCC 生物合成基因组成了总共 477 个基因对。整理后的(AtSCC 和 OsSCC)SCC 编码生物合成基因的系统发育树分为 11 个不同大小的分支,分支内有亚分支。在第 1 个分支中,OsSCC 和 AtSCC 生物合成基因的比例相等,暗示着最原始的谱系。在水稻中鉴定到了 25 个候选拟南芥 SCC 同源物。基因本体论富集分析表明,在错误发现率(FDR)< 0.05 的情况下,水稻-拟南芥 SCC 同源物在以下术语中显著富集:(i)生物过程;硫化合物代谢过程和有机酸代谢过程,(ii)分子功能;氧化还原酶活性,作用于具有氧的掺入或还原的成对供体和(iii)KEGG 途径;代谢途径和次生代谢物的生物合成。在分离不到五个重复块的情况下,在水稻染色体上分布的 SCC 生物合成基因中没有观察到串联重复。本研究的综合水稻 SCC 基因描述包括与拟南芥的基因同线性事件、基序分布和染色体定位,为水稻 SCC 基因功能研究和先进的水稻战略育种提供了基础。