Klein Andrew P, Sattely Elizabeth S
Department of Chemical Engineering, Stanford University, Stanford, CA 94305.
Department of Chemical Engineering, Stanford University, Stanford, CA 94305
Proc Natl Acad Sci U S A. 2017 Feb 21;114(8):1910-1915. doi: 10.1073/pnas.1615625114. Epub 2017 Feb 2.
crop species are prolific producers of indole-sulfur phytoalexins that are thought to have an important role in plant disease resistance. These molecules are conspicuously absent in the model plant , and little is known about the enzymatic steps that assemble the key precursor brassinin. Here, we report the minimum set of biosynthetic genes required to generate cruciferous phytoalexins starting from the well-studied glucosinolate pathway. In vitro biochemical characterization revealed an additional role for the previously described carbon-sulfur lyase SUR1 in processing cysteine-isothiocyanate conjugates, as well as the -methyltransferase DTCMT that methylates the resulting dithiocarbamate, together completing a pathway to brassinin. Additionally, the β-glucosidase BABG that is present in but absent in was shown to act as a myrosinase and may be a determinant of plants that synthesize phytoalexins from indole glucosinolate. Transient expression of the entire pathway in yields brassinin, demonstrating that the biosynthesis of indole-sulfur phytoalexins can be engineered into noncruciferous plants. The identification of these biosynthetic enzymes and the heterologous reconstitution of the indole-sulfur phytoalexin pathway sheds light on an important pathway in an edible plant and opens the door to using metabolic engineering to systematically quantify the impact of cruciferous phytoalexins on plant disease resistance and human health.
作物物种是吲哚 - 硫植物抗毒素的大量生产者,这些植物抗毒素被认为在植物抗病性中起重要作用。在模式植物中明显不存在这些分子,并且对于组装关键前体芸苔宁的酶促步骤知之甚少。在这里,我们报道了从研究充分的硫代葡萄糖苷途径开始生成十字花科植物抗毒素所需的最小生物合成基因集。体外生化特性揭示了先前描述的碳 - 硫裂解酶SUR1在处理半胱氨酸 - 异硫氰酸酯共轭物方面的额外作用,以及将所得二硫代氨基甲酸盐甲基化的β - 甲基转移酶DTCMT,共同完成了通向芸苔宁的途径。此外,在[具体植物A]中存在但在[具体植物B]中不存在的β - 葡萄糖苷酶BABG被证明可作为黑芥子酶,并且可能是从吲哚硫代葡萄糖苷合成植物抗毒素的植物的决定因素。在[具体植物C]中瞬时表达整个途径可产生芸苔宁,这表明吲哚 - 硫植物抗毒素的生物合成可以被工程化到非十字花科植物中。这些生物合成酶的鉴定以及吲哚 - 硫植物抗毒素途径的异源重组揭示了可食用植物中的一条重要途径,并为利用代谢工程系统地量化十字花科植物抗毒素对植物抗病性和人类健康的影响打开了大门。