Department of Genetics, Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, TX 78227-5301, USA.
BMC Genomics. 2012 Jul 18;13:320. doi: 10.1186/1471-2164-13-320.
Dysregulation of microRNA (miRNA) expression has been implicated in molecular genetic events leading to the progression and development of atherosclerosis. We hypothesized that miRNA expression profiles differ between baboons with low and high serum low-density lipoprotein cholesterol (LDL-C) concentrations in response to diet, and that a subset of these miRNAs regulate genes relevant to dyslipidemia and risk of atherosclerosis.
Using Next Generation Illumina sequencing methods, we sequenced hepatic small RNA libraries from baboons differing in their LDL-C response to a high-cholesterol, high-fat (HCHF) challenge diet (low LDL-C, n = 3; high LDL-C, n = 3), resulting in 517 baboon miRNAs: 490 were identical to human miRNAs and 27 were novel. We compared miRNA expression profiles from liver biopsies collected before and after the challenge diet and observed that HCHF diet elicited expression of more miRNAs compared to baseline (chow) diet for both low and high LDL-C baboons. Eighteen miRNAs exhibited differential expression in response to HCHF diet in high LDL-C baboons compared to 10 miRNAs in low LDL-C baboons. We used TargetScan/Base tools to predict putative miRNA targets; miRNAs expressed in high LDL-C baboons had significantly more gene targets than miRNAs expressed in low LDL-C responders. Further, we identified miRNA isomers and other non-coding RNAs that were differentially expressed in response to the challenge diet in both high LDL-C and low LDL-C baboons.
We sequenced and annotated baboon liver miRNAs from low LDL-C and high LDL-C responders using high coverage Next Gen sequencing methods, determined expression changes in response to a HCHF diet challenge, and predicted target genes regulated by the differentially expressed miRNAs. The identified miRNAs will enrich the database for non-coding small RNAs including the extent of variation in these sequences. Further, we identified other small non-coding RNAs differentially expressed in response to diet. Our discovery of differentially expressed baboon miRNAs in response to a HCHF diet challenge that differ by LDL-C phenotype is a fundamental step in understating the role of non-coding RNAs in dyslipidemia.
微小 RNA(miRNA)表达的失调与导致动脉粥样硬化发生和发展的分子遗传事件有关。我们假设,在对高胆固醇、高脂肪(HCHF)饮食的反应中,低密 度脂蛋白胆固醇(LDL-C)浓度低和高的狒狒之间的 miRNA 表达谱不同,并且这些 miRNA 中的一部分调节与血脂异常和动脉粥样硬化风险相关的基因。
使用下一代 Illumina 测序方法,我们对 LDL-C 对 HCHF 挑战饮食反应不同的狒狒的肝小 RNA 文库进行了测序(低 LDL-C,n=3;高 LDL-C,n=3),共得到 517 种狒狒 miRNA:490 种与人类 miRNA 相同,27 种为新 miRNA。我们比较了挑战饮食前后肝活检样本中的 miRNA 表达谱,发现与基础(饮食)相比,HCHF 饮食在低和高 LDL-C 狒狒中都引起了更多 miRNA 的表达。在高 LDL-C 狒狒中,有 18 种 miRNA 对 HCHF 饮食有差异表达,而在低 LDL-C 狒狒中则有 10 种 miRNA 有差异表达。我们使用 TargetScan/Base 工具预测潜在的 miRNA 靶标;在高 LDL-C 狒狒中表达的 miRNA 比在低 LDL-C 反应者中表达的 miRNA 有更多的基因靶标。此外,我们在高 LDL-C 和低 LDL-C 狒狒中均发现了对挑战饮食有差异表达的 miRNA 异构体和其他非编码 RNA。
我们使用高通量 Next Gen 测序方法对低 LDL-C 和高 LDL-C 反应者的狒狒肝 miRNA 进行了测序和注释,确定了对 HCHF 饮食挑战的表达变化,并预测了由差异表达 miRNA 调节的靶基因。所鉴定的 miRNA 将丰富非编码小 RNA 的数据库,包括这些序列的变化程度。此外,我们还发现了其他对饮食有差异表达的小非编码 RNA。我们发现的对 HCHF 饮食挑战有差异表达的狒狒 miRNA,其差异与 LDL-C 表型有关,这是理解非编码 RNA 在血脂异常中的作用的重要一步。