Suppr超能文献

Vpma相位变异在无乳支原体致病机制中的作用。

Role of Vpma phase variation in Mycoplasma agalactiae pathogenesis.

作者信息

Chopra-Dewasthaly Rohini, Baumgartner Martina, Gamper Erika, Innerebner Carmen, Zimmermann Martina, Schilcher Franz, Tichy Alexander, Winter Petra, Jechlinger Wolfgang, Rosengarten Renate, Spergser Joachim

机构信息

Institute of Bacteriology, Mycology and Hygiene, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria.

出版信息

FEMS Immunol Med Microbiol. 2012 Dec;66(3):307-22. doi: 10.1111/j.1574-695X.2012.01010.x. Epub 2012 Aug 21.

Abstract

Compared with other bacterial pathogens, the molecular mechanisms of mycoplasma pathogenicity are largely unknown. Several studies in the past have shown that pathogenic mycoplasmas are equipped with sophisticated genetic systems that allow them to undergo high-frequency surface antigenic variations. Although never clearly proven, these variable mycoplasma surface components are often implicated in host immune evasion and adaptation. Vpma surface lipoproteins of the ruminant pathogen Mycoplasma agalactiae are encoded on a genomic pathogenicity island-like locus and are considered as one of the well-characterized model systems of mycoplasma surface antigenic variation. The present study assesses the role of these phase-variable Vpmas in the molecular pathogenesis of M. agalactiae by testing the wild-type strain PG2 in comparison with the xer1-disrupted Vpma 'phase-locked' mutants in sheep infection models. The data clearly illustrate that although Xer1 recombinase is not a virulence factor of M. agalactiae and Vpma phase variation is not necessary for establishing an infection, it might critically influence the survival and persistence of the pathogen under natural field conditions, mainly due to a better capacity for dissemination and evoking systemic responses. This is the first study where mycoplasma 'phase-locked' mutants are tested in vivo to elucidate the role of phase variation during infection.

摘要

与其他细菌病原体相比,支原体致病的分子机制在很大程度上尚不清楚。过去的几项研究表明,致病性支原体具有复杂的遗传系统,使其能够发生高频表面抗原变异。尽管从未得到明确证实,但这些可变的支原体表面成分常被认为与宿主免疫逃逸和适应有关。反刍动物病原体无乳支原体的Vpma表面脂蛋白由一个基因组致病岛样位点编码,被认为是支原体表面抗原变异的一个特征明确的模型系统之一。本研究通过在绵羊感染模型中测试野生型菌株PG2并与xer1缺失的Vpma“相位锁定”突变体进行比较,评估这些相位可变的Vpma在无乳支原体分子发病机制中的作用。数据清楚地表明,虽然Xer1重组酶不是无乳支原体的毒力因子,Vpma相位变异对于建立感染不是必需的,但它可能在自然野外条件下对病原体的存活和持续存在产生关键影响,主要是由于其具有更好的传播能力和引发全身反应的能力。这是第一项在体内测试支原体“相位锁定”突变体以阐明感染期间相位变异作用的研究。

相似文献

1
Role of Vpma phase variation in Mycoplasma agalactiae pathogenesis.
FEMS Immunol Med Microbiol. 2012 Dec;66(3):307-22. doi: 10.1111/j.1574-695X.2012.01010.x. Epub 2012 Aug 21.
2
Xer1-independent mechanisms of Vpma phase variation in Mycoplasma agalactiae are triggered by Vpma-specific antibodies.
Int J Med Microbiol. 2017 Dec;307(8):443-451. doi: 10.1016/j.ijmm.2017.10.005. Epub 2017 Nov 6.
3
Vpma phase variation is important for survival and persistence of Mycoplasma agalactiae in the immunocompetent host.
PLoS Pathog. 2017 Sep 28;13(9):e1006656. doi: 10.1371/journal.ppat.1006656. eCollection 2017 Sep.
4
Novel role of Vpmas as major adhesins of Mycoplasma agalactiae mediating differential cell adhesion and invasion of Vpma expression variants.
Int J Med Microbiol. 2018 Mar;308(2):263-270. doi: 10.1016/j.ijmm.2017.11.010. Epub 2017 Nov 22.
5
Phase-locked mutants of Mycoplasma agalactiae: defining the molecular switch of high-frequency Vpma antigenic variation.
Mol Microbiol. 2008 Mar;67(6):1196-210. doi: 10.1111/j.1365-2958.2007.06103.x. Epub 2008 Jan 30.
7
Xer1-mediated site-specific DNA inversions and excisions in Mycoplasma agalactiae.
J Bacteriol. 2010 Sep;192(17):4462-73. doi: 10.1128/JB.01537-09. Epub 2010 Jun 18.
8
Experimental infections with Mycoplasma agalactiae identify key factors involved in host-colonization.
PLoS One. 2014 Apr 3;9(4):e93970. doi: 10.1371/journal.pone.0093970. eCollection 2014.
10
[Molecular basis of Mycoplasma agalactiae pathogenicity].
Berl Munch Tierarztl Wochenschr. 2004 Nov-Dec;117(11-12):472-9.

引用本文的文献

1
Immune Responses Induced by Recombinant Membrane Proteins of in Goats.
Vaccines (Basel). 2025 Jul 11;13(7):746. doi: 10.3390/vaccines13070746.
2
Vaccines: Current Status, Hurdles, and Opportunities Due to Advances in Pathogenicity Studies.
Vaccines (Basel). 2024 Feb 2;12(2):156. doi: 10.3390/vaccines12020156.
4
Serum Resistance of Strains and Mutants Bearing Different Lipoprotein Profiles.
Pathogens. 2022 Sep 13;11(9):1036. doi: 10.3390/pathogens11091036.
8
Antimicrobial Resistance in spp.
Microbiol Spectr. 2018 Jul;6(4). doi: 10.1128/microbiolspec.ARBA-0030-2018.
9
Vpma phase variation is important for survival and persistence of Mycoplasma agalactiae in the immunocompetent host.
PLoS Pathog. 2017 Sep 28;13(9):e1006656. doi: 10.1371/journal.ppat.1006656. eCollection 2017 Sep.

本文引用的文献

1
Multilocus sequence typing of Mycoplasma agalactiae.
J Med Microbiol. 2011 Jun;60(Pt 6):803-811. doi: 10.1099/jmm.0.028159-0. Epub 2011 Mar 3.
2
Expansion of intracellular IFN-γ positive lymphocytes during Mycoplasma agalactiae infection in sheep.
Res Vet Sci. 2011 Dec;91(3):e64-7. doi: 10.1016/j.rvsc.2011.01.029. Epub 2011 Feb 26.
3
Presence of contagious agalactia causing mycoplasmas in Spanish goat artificial insemination centres.
Theriogenology. 2011 Apr 15;75(7):1265-70. doi: 10.1016/j.theriogenology.2010.11.040. Epub 2011 Jan 8.
4
Recovery of Mycoplasma agalactiae from the ears of goats experimentally infected by the intramammary route.
Vet J. 2011 Oct;190(1):94-7. doi: 10.1016/j.tvjl.2010.09.010. Epub 2010 Oct 18.
5
Xer1-mediated site-specific DNA inversions and excisions in Mycoplasma agalactiae.
J Bacteriol. 2010 Sep;192(17):4462-73. doi: 10.1128/JB.01537-09. Epub 2010 Jun 18.
6
Chronological and immunohistochemical characterization of the mammary immunoinflammatory response in experimental caprine contagious agalactia.
Vet Immunol Immunopathol. 2010 Jul;136(1-2):43-54. doi: 10.1016/j.vetimm.2010.02.005. Epub 2010 Feb 13.
7
Highlights of mycoplasma research--an historical perspective.
Biologicals. 2010 Mar;38(2):183-90. doi: 10.1016/j.biologicals.2009.11.008. Epub 2010 Feb 10.
8
Mycoplasma agalactiae detected in the semen of goat bucks.
Theriogenology. 2009 Dec;72(9):1278-81. doi: 10.1016/j.theriogenology.2009.07.024. Epub 2009 Sep 20.
10
Determinants of phase variation rate and the fitness implications of differing rates for bacterial pathogens and commensals.
FEMS Microbiol Rev. 2009 May;33(3):504-20. doi: 10.1111/j.1574-6976.2009.00162.x. Epub 2009 Feb 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验