Suppr超能文献

随机化学动力学的近似最大似然估计

Approximate maximum likelihood estimation for stochastic chemical kinetics.

作者信息

Andreychenko Aleksandr, Mikeev Linar, Spieler David, Wolf Verena

机构信息

Computer Science Department, Saarland University, 66123 Saarbrücken, Germany.

出版信息

EURASIP J Bioinform Syst Biol. 2012 Jul 18;2012(1):9. doi: 10.1186/1687-4153-2012-9.

Abstract

: Recent experimental imaging techniques are able to tag and count molecular populations in a living cell. From these data mathematical models are inferred and calibrated. If small populations are present, discrete-state stochastic models are widely-used to describe the discreteness and randomness of molecular interactions. Based on time-series data of the molecular populations, the corresponding stochastic reaction rate constants can be estimated. This procedure is computationally very challenging, since the underlying stochastic process has to be solved for different parameters in order to obtain optimal estimates. Here, we focus on the maximum likelihood method and estimate rate constants, initial populations and parameters representing measurement errors.

摘要

最近的实验成像技术能够对活细胞中的分子群体进行标记和计数。根据这些数据推断并校准数学模型。如果存在少量群体,则广泛使用离散状态随机模型来描述分子相互作用的离散性和随机性。基于分子群体的时间序列数据,可以估计相应的随机反应速率常数。这个过程在计算上极具挑战性,因为必须针对不同参数求解潜在的随机过程才能获得最优估计。在这里,我们专注于最大似然法,并估计速率常数、初始群体以及代表测量误差的参数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6926/3549916/3ebfb8857688/1687-4153-2012-9-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验