Andreychenko Aleksandr, Mikeev Linar, Spieler David, Wolf Verena
Computer Science Department, Saarland University, 66123 Saarbrücken, Germany.
EURASIP J Bioinform Syst Biol. 2012 Jul 18;2012(1):9. doi: 10.1186/1687-4153-2012-9.
: Recent experimental imaging techniques are able to tag and count molecular populations in a living cell. From these data mathematical models are inferred and calibrated. If small populations are present, discrete-state stochastic models are widely-used to describe the discreteness and randomness of molecular interactions. Based on time-series data of the molecular populations, the corresponding stochastic reaction rate constants can be estimated. This procedure is computationally very challenging, since the underlying stochastic process has to be solved for different parameters in order to obtain optimal estimates. Here, we focus on the maximum likelihood method and estimate rate constants, initial populations and parameters representing measurement errors.
最近的实验成像技术能够对活细胞中的分子群体进行标记和计数。根据这些数据推断并校准数学模型。如果存在少量群体,则广泛使用离散状态随机模型来描述分子相互作用的离散性和随机性。基于分子群体的时间序列数据,可以估计相应的随机反应速率常数。这个过程在计算上极具挑战性,因为必须针对不同参数求解潜在的随机过程才能获得最优估计。在这里,我们专注于最大似然法,并估计速率常数、初始群体以及代表测量误差的参数。