Suppr超能文献

最大似然估计法在受体介导黏附中的动力学研究。

Maximum likelihood estimation of the kinetics of receptor-mediated adhesion.

机构信息

Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

J Theor Biol. 2010 Feb 7;262(3):478-87. doi: 10.1016/j.jtbi.2009.10.015. Epub 2009 Oct 14.

Abstract

Adhesion flow assays are commonly employed to characterize the kinetics and force-dependence of receptor-ligand interactions. As transient cellular adhesion events are often mediated by a small number of receptor-ligand complexes (tether bonds) their durations are highly variable, which in turn presents obstacles to standard methods of analysis. In this paper, we employ the stochastic approach to chemical kinetics to construct the pause time distribution. Using this distribution, we develop a robust maximum likelihood (ML) approach to the robust estimation of rate constants associated with receptor-mediated transient adhesion and their confidence intervals. We then formulate robust estimators of the parameters of models for the force-dependence of the off-rate. Lastly, we develop a robust method of elucidation of the force-dependence of the off-rate using Akaike's information criterion (AIC). Our findings conclusively demonstrate that ML estimators of adhesion kinetics are substantial improvements over more conventional approaches, and when combined with Fisher information, they may be used to objectively and reproducibly distinguish the kinetics of different receptor-ligand complexes. Software for the implementation of these methods with experimental data is publicly available as for download at http://www.laurenzi.net.

摘要

黏附流动分析通常用于描述受体-配体相互作用的动力学和力依赖性。由于短暂的细胞黏附事件通常由少量的受体-配体复合物(系链键)介导,因此它们的持续时间高度可变,这反过来又给标准分析方法带来了障碍。在本文中,我们采用化学动力学的随机方法来构建暂停时间分布。利用这个分布,我们开发了一种强大的最大似然(ML)方法,用于稳健估计与受体介导的短暂黏附相关的速率常数及其置信区间。然后,我们为描述解联速率的力依赖性的模型参数制定了稳健的估计量。最后,我们使用赤池信息量准则(AIC)开发了一种稳健的方法来阐明解联速率的力依赖性。我们的研究结果明确表明,与更传统的方法相比,黏附动力学的 ML 估计量有了很大的改进,并且当与 Fisher 信息结合使用时,它们可以用于客观且可重复地区分不同受体-配体复合物的动力学。用于将这些方法与实验数据结合使用的软件可在 http://www.laurenzi.net 上公开下载。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验