Jagodzinski Filip, Hardy Jeanne, Streinu Ileana
Department of Computer Science, 140 Governors Drive, University of Massachusetts Amherst, Amherst, MA 01002, USA.
J Bioinform Comput Biol. 2012 Jun;10(3):1242010. doi: 10.1142/S0219720012420103.
Predicting the effect of a single amino acid substitution on the stability of a protein structure is a fundamental task in macromolecular modeling. It has relevance to drug design and understanding of disease-causing protein variants. We present KINARI-Mutagen, a web server for performing in silico mutation experiments on protein structures from the Protein Data Bank. Our rigidity-theoretical approach permits fast evaluation of the effects of mutations that may not be easy to perform in vitro, because it is not always possible to express a protein with a specific amino acid substitution. We use KINARI-Mutagen to identify critical residues, and we show that our predictions correlate with destabilizing mutations to glycine. In two in-depth case studies we show that the mutated residues identified by KINARI-Mutagen as critical correlate with experimental data, and would not have been identified by other methods such as Solvent Accessible Surface Area measurements or residue ranking by contributions to stabilizing interactions. We also generate 48 mutants for 14 proteins, and compare our rigidity-based results against experimental mutation stability data. KINARI-Mutagen is available at http://kinari.cs.umass.edu.
预测单个氨基酸取代对蛋白质结构稳定性的影响是大分子建模中的一项基本任务。它与药物设计以及对致病蛋白质变体的理解相关。我们展示了KINARI-Mutagen,这是一个用于对来自蛋白质数据库的蛋白质结构进行计算机模拟突变实验的网络服务器。我们基于刚性理论的方法能够快速评估那些在体外可能不易进行的突变的影响,因为并非总是能够表达具有特定氨基酸取代的蛋白质。我们使用KINARI-Mutagen来识别关键残基,并表明我们的预测与向甘氨酸的不稳定突变相关。在两个深入的案例研究中,我们表明KINARI-Mutagen识别为关键的突变残基与实验数据相关,而其他方法(如溶剂可及表面积测量或通过对稳定相互作用的贡献进行残基排序)则无法识别这些残基。我们还为14种蛋白质生成了48个突变体,并将基于刚性的结果与实验突变稳定性数据进行比较。KINARI-Mutagen可在http://kinari.cs.umass.edu获取。