Western Washington University, Computer Science, Bellingham, WA 98225, USA.
Molecules. 2020 Mar 12;25(6):1304. doi: 10.3390/molecules25061304.
Rational drug design aims to develop pharmaceutical agents that impart maximal therapeutic benefits via their interaction with their intended biological targets. In the past several decades, advances in computational tools that inform wet-lab techniques have aided the development of a wide variety of new medicines with high efficacies. Nonetheless, drug development remains a time and cost intensive process. In this work, we have developed a computational pipeline for assessing how individual atoms contribute to a ligand's effect on the structural stability of a biological target. Our approach takes as input a protein-ligand resolved PDB structure file and systematically generates all possible ligand variants. We assess how the atomic-level edits to the ligand alter the drug's effect via a graph theoretic rigidity analysis approach. We demonstrate, via four case studies of common drugs, the utility of our pipeline and corroborate our analyses with known biophysical properties of the medicines, as reported in the literature.
理性药物设计旨在开发通过与预期生物靶标相互作用而产生最大治疗效果的药物。在过去的几十年中,告知湿实验室技术的计算工具的进步,帮助开发了具有高效性的各种新药。尽管如此,药物开发仍然是一个耗时且昂贵的过程。在这项工作中,我们开发了一种计算管道,用于评估单个原子如何影响配体对生物靶标结构稳定性的影响。我们的方法输入一个蛋白质-配体解析的 PDB 结构文件,并系统地生成所有可能的配体变体。我们通过图论刚性分析方法评估对配体的原子级编辑如何改变药物的作用。我们通过四个常见药物的案例研究证明了我们的管道的实用性,并通过文献中报道的药物的已知生物物理性质来证实我们的分析。