Suppr超能文献

便携式呼吸分析仪的在线样品预处理。

Online sample conditioning for portable breath analyzers.

机构信息

Center for Bioelectronics & Biosensors, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA.

出版信息

Anal Chem. 2012 Aug 21;84(16):7172-8. doi: 10.1021/ac301542j. Epub 2012 Aug 8.

Abstract

Various innovative chemical sensors have been developed in recent years to sense dangerous substances in air and trace biomarkers in breath. However, in order to solve real world problems, the sensors must be equipped with efficient sample conditioning that can, e.g., control the humidity, which is discussed much less in the literature. To meet the demand, a miniaturized mouthpiece was developed for personal breath analyzers. A key function of the mouthpiece is to condition the humidity in real breath samples without changing the analyte concentrations and introducing substantial backpressure, which is achieved with optimized packing of desiccant particles. Numerical simulations were carried out to determine the performance of the mouthpiece in terms of various controllable parameters, such as the size, density, and geometry of the packing. Mouthpieces with different configurations were built and tested, and the experimental data validated the simulation findings. A mouthpiece with optimized performance reducing relative humidity from 95% (27,000 ppmV) to 29% (8000 ppmV) whereas retaining 92% nitric oxide (50 ppbV to 46 ppbV) was built and integrated into a hand-held exhaled nitric oxide sensor, and the performance of exhaled nitric oxide measurement was in good agreement with the gold standard chemiluminescence technique. Acetone, carbon dioxide, oxygen, and ammonia samples were also measured after passing through the desiccant mouthpiece using commercial sensors to examine wide applicability of this breath conditioning approach.

摘要

近年来,已经开发出了各种创新的化学传感器,用于感测空气中的危险物质和呼吸中的痕量生物标志物。然而,为了解决现实世界中的问题,传感器必须配备高效的样品调节装置,例如控制湿度,而这在文献中讨论得较少。为了满足这一需求,为个人呼吸分析仪开发了一种小型化的吸嘴。吸嘴的一个关键功能是在真实的呼吸样本中调节湿度,而不会改变分析物浓度并引入大量背压,这是通过干燥剂颗粒的优化填充来实现的。进行了数值模拟,以根据各种可控参数(例如填充的尺寸、密度和几何形状)来确定吸嘴的性能。制造了具有不同配置的吸嘴并进行了测试,实验数据验证了模拟结果。构建并集成到手持式呼出一氧化氮传感器中,并与化学发光技术的金标准进行了比较,结果表明,该传感器在测量呼出一氧化氮时性能良好。还使用商业传感器测量了通过干燥剂吸嘴后的丙酮、二氧化碳、氧气和氨样品,以检验这种呼吸调节方法的广泛适用性。

相似文献

1
Online sample conditioning for portable breath analyzers.
Anal Chem. 2012 Aug 21;84(16):7172-8. doi: 10.1021/ac301542j. Epub 2012 Aug 8.
2
Electrochemical sensor system for breath analysis of aldehydes, CO and NO.
J Breath Res. 2015 Mar 9;9(1):016008. doi: 10.1088/1752-7155/9/1/016008.
3
Exhaled nitric oxide collected with two different mouthpieces: a study in asthmatic patients.
Braz J Med Biol Res. 2002 Oct;35(10):1133-7. doi: 10.1590/s0100-879x2002001000004. Epub 2002 Oct 13.
4
Breath-by-breath measurement of oxygen using a compact optical sensor.
J Biomed Opt. 2008 Jan-Feb;13(1):014027. doi: 10.1117/1.2870092.
9
Monitoring breath markers under controlled conditions.
J Breath Res. 2015 Oct 15;9(4):047101. doi: 10.1088/1752-7155/9/4/047101.

引用本文的文献

2
Hydrogel-incorporated Colorimetric Sensors with High Humidity Tolerance for Environmental Gases Sensing.
Sens Actuators B Chem. 2021 Oct 15;345. doi: 10.1016/j.snb.2021.130404. Epub 2021 Jul 6.
3
Mitigation of Humidity Interference in Colorimetric Sensing of Gases.
ACS Sens. 2021 Feb 26;6(2):303-320. doi: 10.1021/acssensors.0c01644. Epub 2020 Oct 21.
4
Cerium Oxide-Tungsten Oxide Core-Shell Nanowire-Based Microsensors Sensitive to Acetone.
Biosensors (Basel). 2018 Nov 23;8(4):116. doi: 10.3390/bios8040116.
5
Assessment, origin, and implementation of breath volatile cancer markers.
Chem Soc Rev. 2014 Mar 7;43(5):1423-49. doi: 10.1039/c3cs60329f. Epub 2013 Dec 4.

本文引用的文献

1
Measurement of endogenous acetone and isoprene in exhaled breath during sleep.
Physiol Meas. 2012 Mar;33(3):413-28. doi: 10.1088/0967-3334/33/3/413. Epub 2012 Feb 28.
2
A modeling-based evaluation of isothermal rebreathing for breath gas analyses of highly soluble volatile organic compounds.
J Breath Res. 2012 Mar;6(1):016005. doi: 10.1088/1752-7155/6/1/016005. Epub 2012 Jan 10.
3
Effect of humidity on nanoparticle-based chemiresistors: a comparison between synthetic and real-world samples.
ACS Appl Mater Interfaces. 2012 Jan;4(1):317-25. doi: 10.1021/am2013695. Epub 2011 Dec 15.
4
On-line, real time monitoring of exhaled trace gases by SIFT-MS in the perioperative setting: a feasibility study.
Analyst. 2011 Aug 21;136(16):3233-7. doi: 10.1039/c1an15356k. Epub 2011 Jun 30.
5
Volatile compounds in health and disease.
Curr Opin Clin Nutr Metab Care. 2011 Sep;14(5):455-60. doi: 10.1097/MCO.0b013e3283490280.
6
Inhaled today, not gone tomorrow: pharmacokinetics and environmental exposure of volatiles in exhaled breath.
J Breath Res. 2011 Sep;5(3):037103. doi: 10.1088/1752-7155/5/3/037103. Epub 2011 Jun 7.
7
A mathematical model for breath gas analysis of volatile organic compounds with special emphasis on acetone.
J Math Biol. 2011 Nov;63(5):959-99. doi: 10.1007/s00285-010-0398-9. Epub 2011 Jan 14.
8
Ultrasensitive detection of nitrogen oxides over a nanoporous membrane.
Anal Chem. 2010 Dec 1;82(23):9938-40. doi: 10.1021/ac101908g. Epub 2010 Nov 5.
9
Physiological modeling of isoprene dynamics in exhaled breath.
J Theor Biol. 2010 Dec 21;267(4):626-37. doi: 10.1016/j.jtbi.2010.09.028. Epub 2010 Sep 29.
10
Dynamic profiles of volatile organic compounds in exhaled breath as determined by a coupled PTR-MS/GC-MS study.
Physiol Meas. 2010 Sep;31(9):1169-84. doi: 10.1088/0967-3334/31/9/008. Epub 2010 Jul 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验