Suppr超能文献

两种基于 DNA 序列的镰刀菌属复合种分型方案的比较及一种新的共识方法的提出。

Comparison of two DNA sequence-based typing schemes for the Fusarium solani Species Complex and proposal of a new consensus method.

机构信息

Service de Parasitologie-Mycologie, CHU de Nancy, Hôpitaux de Brabois, 11 allée du Morvan, 54511 Vandœuvre-les-Nancy, France.

出版信息

J Microbiol Methods. 2012 Oct;91(1):65-72. doi: 10.1016/j.mimet.2012.07.012. Epub 2012 Jul 17.

Abstract

Multilocus sequence typing (MLST) is a widely used approach for differentiating microbial isolates presenting many advantages such as easy access through online databases and straightforward interpretation. For the Fusarium solani species complex (FSSC), three gene regions have been widely used to investigate phylogenetic relationships at the interspecific level (ITS-nuLSU, EF1a, RPB2) and a nomenclature system has been proposed for the different known haplotypes. More recently, a MLST scheme was proposed for this species complex based on the polymorphisms of five housekeeping genes (ACC, ICL, GDP, MDP, SOD). Here, we compare the phylogenetic resolution and sequence discriminatory powers of these two sets of loci on 50 epidemiologically unrelated FSSC strains. Although the widely used gene set offers better phylogenetic resolution, the newly developed gene set is slightly better at discriminating isolates using a MLST method. A consensus scheme of eight loci is proposed for typing FSSC strains combining the advantages of the two previous gene sets and offering the best typing efficiency.

摘要

多位点序列分型(MLST)是一种广泛用于区分微生物分离株的方法,具有许多优点,例如通过在线数据库轻松访问和易于解释。对于茄病镰刀菌物种复合体(FSSC),已经广泛使用三个基因区域来研究种间水平的系统发育关系(ITS-nuLSU、EF1a、RPB2),并提出了用于不同已知单倍型的命名系统。最近,基于五个管家基因(ACC、ICL、GDP、MDP、SOD)的多态性,为该物种复合体提出了一种 MLST 方案。在这里,我们比较了这两套基因座在 50 个流行病学上无关的 FSSC 菌株上的系统发育分辨率和序列区分能力。尽管广泛使用的基因集提供了更好的系统发育分辨率,但新开发的基因集在使用 MLST 方法区分分离株方面略胜一筹。提出了一种结合两种先前基因集优势的八位点共识方案,用于对 FSSC 菌株进行分型,提供了最佳的分型效率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验