Department of Anesthesiology and Intensive Care Medicine, Campus Virchow-Klinikum, Charité-Universitätsmedizin, Berlin, Germany.
Anesthesiology. 2012 Sep;117(3):592-601. doi: 10.1097/ALN.0b013e3182655f80.
Nitrite (NO2) is a physiologic source of nitric oxide and protects against ischemia-reperfusion injuries. We hypothesized that nitrite would be protective in a rat model of ventilator-induced lung injury and sought to determine if nitrite protection is mediated by enzymic catalytic reduction to nitric oxide.
Rats were anesthetized and mechanically ventilated. Group 1 had low tidal volume ventilation (LVT) (6 ml/kg and 2 cm H2O positive end-expiratory pressure; n=10); group 2 had high tidal volume ventilation (HVT) (2 h of 35 cm H2O inspiratory peak pressure and 0 cm H2O positive end-expiratory pressure; n=14); groups 3-5: HVT with sodium nitrite (NaNO2) pretreatment (0.25, 2.5, 25 μmol/kg IV; n=6-8); group 6: HVT+NaNO2+nitric oxide scavenger 2-(4-carboxyphenyl)-4,5dihydro-4,4,5,5-tetramethyl-1H-imidazolyl-1-oxy-3oxide(n=6); group 7: HVT+NaNO2+nitric oxide synthase inhibitor N-nitro-L-arginine methyl ester (n=7); and group 8: HVT+NaNO2+xanthine oxidoreductase inhibitor allopurinol (n=6). Injury assessment included physiologic measurements (gas exchange, lung compliance, lung edema formation, vascular perfusion pressures) with histologic and biochemical correlates of lung injury and protection.
Injurious ventilation caused statistically significant injury in untreated animals. NaNO2 pretreatment mitigated the gas exchange deterioration, lung edema formation, and histologic injury with maximal protection at 2.5 μmol/kg. Decreasing nitric oxide bioavailability by nitric oxide scavenging, nitric oxide synthase inhibition, or xanthine oxidoreductase inhibition abolished the protection by NaNO2.
Nitrite confers protection against ventilator-induced lung injury in rats. Catalytic reduction to nitric oxide and mitigation of ventilator-induced lung injury is dependent on both xanthine oxidoreductase and nitric oxide synthases.
亚硝酸盐(NO2)是一氧化氮的生理来源,可防止缺血再灌注损伤。我们假设亚硝酸盐在大鼠呼吸机诱导性肺损伤模型中具有保护作用,并试图确定亚硝酸盐的保护作用是否通过酶催化还原为一氧化氮介导。
大鼠麻醉并机械通气。第 1 组进行低潮气量通气(LVT)(6ml/kg 和 2cmH2O 呼气末正压;n=10);第 2 组进行大潮气量通气(HVT)(2h 内 35cmH2O 吸气峰压和 0cmH2O 呼气末正压;n=14);第 3-5 组:HVT 预处理亚硝酸盐钠(NaNO2)(0.25、2.5、25μmol/kg IV;n=6-8);第 6 组:HVT+NaNO2+一氧化氮清除剂 2-(4-羧基苯基)-4,5-二氢-4,4,5,5-四甲基-1H-咪唑基-1-氧基-3-氧化物(n=6);第 7 组:HVT+NaNO2+一氧化氮合酶抑制剂 N-硝基-L-精氨酸甲酯(n=7);第 8 组:HVT+NaNO2+黄嘌呤氧化还原酶抑制剂别嘌呤醇(n=6)。损伤评估包括生理测量(气体交换、肺顺应性、肺水肿形成、血管灌注压),以及肺损伤和保护的组织学和生化相关性。
未治疗动物的损伤通气导致统计学上显著的损伤。NaNO2 预处理减轻了气体交换恶化、肺水肿形成和组织学损伤,最大保护作用在 2.5μmol/kg 时出现。通过清除一氧化氮、抑制一氧化氮合酶或黄嘌呤氧化还原酶抑制,降低一氧化氮的生物利用度,消除了 NaNO2 的保护作用。
亚硝酸盐可减轻大鼠呼吸机诱导性肺损伤。催化还原为一氧化氮和减轻呼吸机诱导性肺损伤依赖于黄嘌呤氧化还原酶和一氧化氮合酶。