Suppr超能文献

评估斯佩茨勒-马丁补充模型在选择脑动静脉畸形患者进行手术中的表现。

Evaluating performance of the spetzler-martin supplemented model in selecting patients with brain arteriovenous malformation for surgery.

机构信息

Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA,

出版信息

Stroke. 2012 Sep;43(9):2497-9. doi: 10.1161/STROKEAHA.112.661942. Epub 2012 Jul 19.

Abstract

BACKGROUND AND PURPOSE

Our recently proposed point scoring model includes the widely-used Spetzler-Martin (SM)-5 variables, along with age, unruptured presentation, and diffuse border (SM-Supp). Here we evaluate the SM-Supp model performance compared with SM-5, SM-3, and Toronto prediction models using net reclassification index, which quantifies the correct movement in risk reclassification, and validate the model in an independent data set.

METHODS

Bad outcome was defined as worsening between preoperative and final postoperative modified Rankin Scale score. Point scores for each model were used as predictors in logistic regression and predictions evaluated using net reclassification index at varying thresholds (10%-30%) and any threshold (continuous net reclassification index >0). Performance was validated in an independent data set (n=117).

RESULTS

Net gain in risk reclassification was better using the SM-Supp model over a range of threshold values (net reclassification index=9%-25%) and significantly improved overall predictions for outcomes in the development data set, yielding a continuous net reclassification index of 64% versus SM-5, 67% versus SM-3, and 61% versus Toronto (all P<0.001). In the validation data set, the SM-Supp model again correctly reclassified a greater proportion of patients versus SM-5 (82%), SM-3 (85%), and Toronto models (69%).

CONCLUSIONS

The SM-Supp model demonstrated better discrimination and risk reclassification than several existing models and should be considered for clinical practice to estimate surgical risk in patients with brain arteriovenous malformation.

摘要

背景与目的

我们最近提出的评分模型包括广泛使用的 Spetzler-Martin(SM)-5 变量,以及年龄、未破裂表现和弥散边界(SM-Supp)。在这里,我们使用净重新分类指数来评估 SM-Supp 模型与 SM-5、SM-3 和多伦多预测模型的性能,该指数量化了风险重新分类中的正确移动,并在独立数据集上验证了该模型。

方法

不良结果定义为术前和最终术后改良 Rankin 量表评分之间的恶化。每个模型的分数作为逻辑回归的预测因子,使用净重新分类指数在不同的阈值(10%-30%)和任何阈值(连续净重新分类指数>0)下评估预测。在独立数据集(n=117)中验证了性能。

结果

在一系列阈值(净重新分类指数=9%-25%)范围内,SM-Supp 模型在风险重新分类方面的增益更好,并且显著改善了发展数据集中的结果总体预测,产生连续净重新分类指数为 64%与 SM-5 相比,67%与 SM-3 相比,61%与多伦多相比(均<0.001)。在验证数据集中,SM-Supp 模型再次正确地对更多患者进行了重新分类,与 SM-5(82%)、SM-3(85%)和多伦多模型(69%)相比。

结论

SM-Supp 模型在区分度和风险重新分类方面优于几种现有的模型,应该在临床实践中考虑用于估计脑动静脉畸形患者的手术风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/124c/3431204/20da8c19ab8e/nihms397155f1a.jpg

相似文献

引用本文的文献

6
Diagnosis and evaluation of intracranial arteriovenous malformations.颅内动静脉畸形的诊断与评估
Surg Neurol Int. 2015 May 12;6:76. doi: 10.4103/2152-7806.156866. eCollection 2015.

本文引用的文献

6

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验