Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA,
Stroke. 2012 Sep;43(9):2497-9. doi: 10.1161/STROKEAHA.112.661942. Epub 2012 Jul 19.
Our recently proposed point scoring model includes the widely-used Spetzler-Martin (SM)-5 variables, along with age, unruptured presentation, and diffuse border (SM-Supp). Here we evaluate the SM-Supp model performance compared with SM-5, SM-3, and Toronto prediction models using net reclassification index, which quantifies the correct movement in risk reclassification, and validate the model in an independent data set.
Bad outcome was defined as worsening between preoperative and final postoperative modified Rankin Scale score. Point scores for each model were used as predictors in logistic regression and predictions evaluated using net reclassification index at varying thresholds (10%-30%) and any threshold (continuous net reclassification index >0). Performance was validated in an independent data set (n=117).
Net gain in risk reclassification was better using the SM-Supp model over a range of threshold values (net reclassification index=9%-25%) and significantly improved overall predictions for outcomes in the development data set, yielding a continuous net reclassification index of 64% versus SM-5, 67% versus SM-3, and 61% versus Toronto (all P<0.001). In the validation data set, the SM-Supp model again correctly reclassified a greater proportion of patients versus SM-5 (82%), SM-3 (85%), and Toronto models (69%).
The SM-Supp model demonstrated better discrimination and risk reclassification than several existing models and should be considered for clinical practice to estimate surgical risk in patients with brain arteriovenous malformation.
我们最近提出的评分模型包括广泛使用的 Spetzler-Martin(SM)-5 变量,以及年龄、未破裂表现和弥散边界(SM-Supp)。在这里,我们使用净重新分类指数来评估 SM-Supp 模型与 SM-5、SM-3 和多伦多预测模型的性能,该指数量化了风险重新分类中的正确移动,并在独立数据集上验证了该模型。
不良结果定义为术前和最终术后改良 Rankin 量表评分之间的恶化。每个模型的分数作为逻辑回归的预测因子,使用净重新分类指数在不同的阈值(10%-30%)和任何阈值(连续净重新分类指数>0)下评估预测。在独立数据集(n=117)中验证了性能。
在一系列阈值(净重新分类指数=9%-25%)范围内,SM-Supp 模型在风险重新分类方面的增益更好,并且显著改善了发展数据集中的结果总体预测,产生连续净重新分类指数为 64%与 SM-5 相比,67%与 SM-3 相比,61%与多伦多相比(均<0.001)。在验证数据集中,SM-Supp 模型再次正确地对更多患者进行了重新分类,与 SM-5(82%)、SM-3(85%)和多伦多模型(69%)相比。
SM-Supp 模型在区分度和风险重新分类方面优于几种现有的模型,应该在临床实践中考虑用于估计脑动静脉畸形患者的手术风险。