Suppr超能文献

神经祖细胞的空间域和新生大鼠脊髓中干细胞龛的功能复杂性。

Spatial domains of progenitor-like cells and functional complexity of a stem cell niche in the neonatal rat spinal cord.

机构信息

Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, CP11600, Montevideo, Uruguay.

出版信息

Stem Cells. 2012 Sep;30(9):2020-31. doi: 10.1002/stem.1175.

Abstract

During spinal cord development, progenitors in the neural tube are arranged within spatial domains that generate specific cell types. The ependyma of the postnatal spinal cord seems to retain cells with properties of the primitive neural stem cells, some of which are able to react to injury with active proliferation. However, the functional complexity and organization of this stem cell niche in mammals remains poorly understood. Here, we combined immunohistochemistry for cell-specific markers with patch-clamp recordings to test the hypothesis that the ependyma of the neonatal rat spinal cord contains progenitor-like cells functionally segregated within specific domains. Cells on the lateral aspects of the ependyma combined morphological and molecular traits of ependymocytes and radial glia (RG) expressing S100β and vimentin, displayed passive membrane properties and were electrically coupled via Cx43. Cells contacting the ventral and dorsal poles expressed the neural stem cell markers nestin and/or vimentin, had the typical morphology of RG, and appeared uncoupled displaying various combinations of K(+) and Ca(2+) voltage-gated currents. Although progenitor-like cells were mitotically active around the entire ependyma, the proliferative capacity seemed higher on lateral domains. Our findings represent the first evidence that the ependyma of the rat harbors progenitor-like cells with heterogeneous electrophysiological phenotypes organized in spatial domains. The manipulation of specific functional properties in the heterogeneous population of progenitor-like cells contacting the ependyma may in future help to regulate their behavior and lineage potential, providing the cell types required for the endogenous repair of the injured spinal cord.

摘要

在脊髓发育过程中,神经管中的祖细胞排列在产生特定细胞类型的空间域内。出生后脊髓的室管膜似乎保留了具有原始神经干细胞特性的细胞,其中一些细胞能够通过积极增殖对损伤作出反应。然而,哺乳动物中这种干细胞生态位的功能复杂性和组织仍知之甚少。在这里,我们将细胞特异性标志物的免疫组织化学与膜片钳记录相结合,以检验以下假设,即新生大鼠脊髓的室管膜包含在特定区域内功能上分离的祖细胞样细胞。室管膜侧面的细胞结合了表达 S100β 和波形蛋白的室管膜细胞和放射状胶质细胞(RG)的形态和分子特征,表现出被动膜特性,并通过 Cx43 进行电偶联。与腹侧和背侧极接触的细胞表达神经干细胞标志物巢蛋白和/或波形蛋白,具有 RG 的典型形态,并且表现出不偶联,显示出各种 K(+) 和 Ca(2+) 电压门控电流的组合。尽管祖细胞样细胞在整个室管膜周围具有有丝分裂活性,但在侧区的增殖能力似乎更高。我们的发现首次证明大鼠的室管膜含有具有不同电生理表型的祖细胞样细胞,这些细胞组织在空间域中。在与室管膜接触的祖细胞样细胞的异质群体中操纵特定的功能特性,可能有助于调节它们的行为和谱系潜能,为内源性修复损伤的脊髓提供所需的细胞类型。

相似文献

2
Purinergic signalling in a latent stem cell niche of the rat spinal cord.
Purinergic Signal. 2016 Jun;12(2):331-41. doi: 10.1007/s11302-016-9507-6. Epub 2016 Mar 17.
3
Connexin Signaling Is Involved in the Reactivation of a Latent Stem Cell Niche after Spinal Cord Injury.
J Neurosci. 2020 Mar 11;40(11):2246-2258. doi: 10.1523/JNEUROSCI.2056-19.2020. Epub 2020 Jan 30.
4
Enigmatic central canal contacting cells: immature neurons in "standby mode"?
J Neurosci. 2009 Aug 12;29(32):10010-24. doi: 10.1523/JNEUROSCI.6183-08.2009.
5
Cellular organization of the central canal ependymal zone, a niche of latent neural stem cells in the adult mammalian spinal cord.
Neuroscience. 2009 Dec 15;164(3):1044-56. doi: 10.1016/j.neuroscience.2009.09.006. Epub 2009 Sep 9.
7
8
Spinal Cord Stem Cells In Their Microenvironment: The Ependyma as a Stem Cell Niche.
Adv Exp Med Biol. 2017;1041:55-79. doi: 10.1007/978-3-319-69194-7_5.
9
Nestin-positive cells in the spinal cord: a potential source of neural stem cells.
Int J Dev Neurosci. 2008 Nov;26(7):813-20. doi: 10.1016/j.ijdevneu.2008.06.002. Epub 2008 Jun 20.
10
The inner lining of the reptilian brain: a heterogeneous cellular mosaic.
Glia. 2014 Feb;62(2):300-16. doi: 10.1002/glia.22607. Epub 2013 Dec 8.

引用本文的文献

1
Roles of cerebrospinal fluid-contacting neurons as potential neural stem cells in the repair and regeneration of spinal cord injuries.
Front Cell Dev Biol. 2024 Jun 25;12:1426395. doi: 10.3389/fcell.2024.1426395. eCollection 2024.
3
P2X7 receptor activation awakes a dormant stem cell niche in the adult spinal cord.
Front Cell Neurosci. 2023 Dec 18;17:1288676. doi: 10.3389/fncel.2023.1288676. eCollection 2023.
4
The combined application of stem cells and three-dimensional bioprinting scaffolds for the repair of spinal cord injury.
Neural Regen Res. 2024 Aug 1;19(8):1751-1758. doi: 10.4103/1673-5374.385842. Epub 2023 Sep 22.
6
Stem Cell Therapy for Spinal Cord Injury.
Cell Transplant. 2021 Jan-Dec;30:963689721989266. doi: 10.1177/0963689721989266.
7
Connexin Signaling Is Involved in the Reactivation of a Latent Stem Cell Niche after Spinal Cord Injury.
J Neurosci. 2020 Mar 11;40(11):2246-2258. doi: 10.1523/JNEUROSCI.2056-19.2020. Epub 2020 Jan 30.
8
Spinal RacGAP α-Chimaerin Is Required to Establish the Midline Barrier for Proper Corticospinal Axon Guidance.
J Neurosci. 2017 Aug 9;37(32):7682-7699. doi: 10.1523/JNEUROSCI.3123-16.2017. Epub 2017 Jul 26.
9
Characterization of the Filum terminale as a neural progenitor cell niche in both rats and humans.
J Comp Neurol. 2017 Feb 15;525(3):661-675. doi: 10.1002/cne.24094. Epub 2016 Sep 27.
10
Purinergic signalling in a latent stem cell niche of the rat spinal cord.
Purinergic Signal. 2016 Jun;12(2):331-41. doi: 10.1007/s11302-016-9507-6. Epub 2016 Mar 17.

本文引用的文献

2
Adult spinal cord radial glia display a unique progenitor phenotype.
PLoS One. 2011;6(9):e24538. doi: 10.1371/journal.pone.0024538. Epub 2011 Sep 12.
3
The spinal cord ependymal region: a stem cell niche in the caudal central nervous system.
Front Biosci (Landmark Ed). 2011 Jan 1;16(3):1044-59. doi: 10.2741/3734.
4
Pericentrin in cellular function and disease.
J Cell Biol. 2010 Jan 25;188(2):181-90. doi: 10.1083/jcb.200908114. Epub 2009 Dec 1.
6
Cellular organization of the central canal ependymal zone, a niche of latent neural stem cells in the adult mammalian spinal cord.
Neuroscience. 2009 Dec 15;164(3):1044-56. doi: 10.1016/j.neuroscience.2009.09.006. Epub 2009 Sep 9.
7
Enigmatic central canal contacting cells: immature neurons in "standby mode"?
J Neurosci. 2009 Aug 12;29(32):10010-24. doi: 10.1523/JNEUROSCI.6183-08.2009.
8
Characterization of voltage-gated potassium channels in human neural progenitor cells.
PLoS One. 2009 Jul 8;4(7):e6168. doi: 10.1371/journal.pone.0006168.
9
The glial nature of embryonic and adult neural stem cells.
Annu Rev Neurosci. 2009;32:149-84. doi: 10.1146/annurev.neuro.051508.135600.
10
Home at last: neural stem cell niches defined.
Cell Stem Cell. 2009 Jun 5;4(6):507-10. doi: 10.1016/j.stem.2009.05.008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验