Suppr超能文献

单束声镊应用的可行性研究。

A feasibility study of applications of single beam acoustic tweezers.

作者信息

Li Ying, Lee Changyang, Chen Ruimin, Zhou Qifa, Shung K Kirk

机构信息

NIH Transducer Resource Center and Department of Biomedical Engineering, University of Southern California , Los Angeles, California 90089-1111, USA.

出版信息

Appl Phys Lett. 2014 Oct 27;105(17):173701. doi: 10.1063/1.4900716. Epub 2014 Oct 28.

Abstract

Tools that are capable of manipulating micro-sized objects have been widely used in such fields as physics, chemistry, biology, and medicine. Several devices, including optical tweezers, atomic force microscope, micro-pipette aspirator, and standing surface wave type acoustic tweezers have been studied to satisfy this need. However, none of them has been demonstrated to be suitable for and clinical studies. Single beam acoustic tweezers (SBAT) is a technology that uses highly focused acoustic beam to trap particles toward the beam focus. Its feasibility was first theoretically and experimentally demonstrated by Lee and Shung several years ago. Since then, much effort has been devoted to improving this technology. At present, the tool is capable of trapping a microparticle as small as 1 m, as well as a single red blood cell. Although in comparing to other microparticles manipulating technologies, SBAT has advantages of providing stronger trapping force and deeper penetration depth in tissues, and producing less tissue damage, its potential for applications has yet been explored. It is worth noting that ultrasound has been used as a diagnostic tool for over 50 years and no known major adverse effects have been observed at the diagnostic energy level. This paper reports the results of an initial attempt to assess the feasibility of single beam acoustic tweezers to trap microparticles inside of a blood vessel. The acoustic intensity of SBAT under the trapping conditions that were utilized was measured. The mechanical index and thermal index at the focus of acoustic beam were found to be 0.48 and 0.044, respectively, which meet the standard of commercial diagnostic ultrasound system.

摘要

能够操控微小物体的工具已在物理、化学、生物学和医学等领域广泛使用。为满足这一需求,人们已对包括光镊、原子力显微镜、微量移液器吸头以及驻波型声镊在内的多种设备展开研究。然而,尚无一种设备被证明适用于临床研究。单束声镊(SBAT)是一种利用高度聚焦的声束将粒子捕获至声束焦点的技术。其可行性早在数年前就由Lee和Shung通过理论和实验得以证实。自那时起,人们便致力于改进这项技术。目前,该工具能够捕获小至1微米的微粒以及单个红细胞。尽管与其他微粒操控技术相比,单束声镊具有捕获力更强、在组织中的穿透深度更深以及对组织造成的损伤更小等优势,但其在临床应用方面的潜力尚未得到探索。值得注意的是,超声作为一种诊断工具已使用了50多年,在诊断能量水平下尚未观察到已知的重大不良反应。本文报告了一项初步尝试的结果,旨在评估单束声镊在血管内捕获微粒的可行性。测量了在所用捕获条件下单束声镊的声强。发现声束焦点处的机械指数和热指数分别为0.48和0.044,这符合商用诊断超声系统的标准。

相似文献

1
A feasibility study of applications of single beam acoustic tweezers.
Appl Phys Lett. 2014 Oct 27;105(17):173701. doi: 10.1063/1.4900716. Epub 2014 Oct 28.
2
Red blood cell trapping using single-beam acoustic tweezers in the Rayleigh regime.
iScience. 2023 Oct 11;26(11):108178. doi: 10.1016/j.isci.2023.108178. eCollection 2023 Nov 17.
3
Single-Beam Acoustic Tweezers for Cell Biology: Molecular to In Vivo Level.
IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Oct;71(10):1269-1288. doi: 10.1109/TUFFC.2024.3456083. Epub 2024 Oct 10.
4
Potential-well model in acoustic tweezers.
IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Jun;57(6):1451-9. doi: 10.1109/TUFFC.2010.1564.
5
Feasibility of multiple micro-particle trapping--a simulation study.
Sensors (Basel). 2015 Feb 27;15(3):4958-74. doi: 10.3390/s150304958.
6
Contactless microparticle control via ultrahigh frequency needle type single beam acoustic tweezers.
Appl Phys Lett. 2016 Oct 24;109(17):173509. doi: 10.1063/1.4966285. Epub 2016 Oct 27.
7
The forbidden band and size selectivity of acoustic radiation force trapping.
iScience. 2020 Dec 26;24(1):101988. doi: 10.1016/j.isci.2020.101988. eCollection 2021 Jan 22.
8
An adjustable multi-scale single beam acoustic tweezers based on ultrahigh frequency ultrasonic transducer.
Biotechnol Bioeng. 2017 Nov;114(11):2637-2647. doi: 10.1002/bit.26365. Epub 2017 Jul 18.
10
Numerical analysis for transverse microbead trapping using 30 MHz focused ultrasound in ray acoustics regime.
Ultrasonics. 2014 Jan;54(1):11-9. doi: 10.1016/j.ultras.2013.06.002. Epub 2013 Jun 17.

引用本文的文献

1
Multi-Objective Optimization of IME-Based Acoustic Tweezers for Mitigating Node Displacements.
Polymers (Basel). 2025 Jul 24;17(15):2018. doi: 10.3390/polym17152018.
2
Ultrasound-cavitation-enhanced drug delivery via microbubble clustering induced by acoustic vortex tweezers.
Ultrason Sonochem. 2025 Mar;114:107273. doi: 10.1016/j.ultsonch.2025.107273. Epub 2025 Feb 15.
3
Tunable Acoustic Tweezer System for Precise Three-Dimensional Particle Manipulation.
Micromachines (Basel). 2024 Oct 8;15(10):1240. doi: 10.3390/mi15101240.
4
Red blood cell trapping using single-beam acoustic tweezers in the Rayleigh regime.
iScience. 2023 Oct 11;26(11):108178. doi: 10.1016/j.isci.2023.108178. eCollection 2023 Nov 17.
5
Review of Ultrasonic Particle Manipulation Techniques: Applications and Research Advances.
Micromachines (Basel). 2023 Jul 25;14(8):1487. doi: 10.3390/mi14081487.
6
Particle Manipulation in 2D Space Using a Capacitive Micromachined Ultrasonic Transducer.
Micromachines (Basel). 2022 Mar 29;13(4):534. doi: 10.3390/mi13040534.
8
Self-Navigated 3D Acoustic Tweezers in Complex Media Based on Time Reversal.
Research (Wash D C). 2021 Jan 4;2021:9781394. doi: 10.34133/2021/9781394. eCollection 2021.
9
Tornado-inspired acoustic vortex tweezer for trapping and manipulating microbubbles.
Proc Natl Acad Sci U S A. 2021 Jan 26;118(4). doi: 10.1073/pnas.2023188118.
10
Role and mechanism of micro-energy treatment in regenerative medicine.
Transl Androl Urol. 2020 Apr;9(2):690-701. doi: 10.21037/tau.2020.02.25.

本文引用的文献

1
Non-contact high-frequency ultrasound microbeam stimulation for studying mechanotransduction in human umbilical vein endothelial cells.
Ultrasound Med Biol. 2014 Sep;40(9):2172-82. doi: 10.1016/j.ultrasmedbio.2014.03.018. Epub 2014 Jul 9.
3
A simple method for evaluating the trapping performance of acoustic tweezers.
Appl Phys Lett. 2013 Feb 25;102(8):84102. doi: 10.1063/1.4793654.
4
Acoustic trapping with a high frequency linear phased array.
Appl Phys Lett. 2012 Nov 19;101(21):214104. doi: 10.1063/1.4766912. Epub 2012 Nov 21.
5
Ultrahigh frequency lensless ultrasonic transducers for acoustic tweezers application.
Biotechnol Bioeng. 2013 Mar;110(3):881-6. doi: 10.1002/bit.24735. Epub 2012 Oct 16.
6
Focused high frequency needle transducer for ultrasonic imaging and trapping.
Appl Phys Lett. 2012 Jul 9;101(2):24105. doi: 10.1063/1.4736731. Epub 2012 Jul 11.
7
Microfluidic acoustic trapping force and stiffness measurement using viscous drag effect.
Ultrasonics. 2013 Jan;53(1):249-54. doi: 10.1016/j.ultras.2012.06.008. Epub 2012 Jul 6.
8
Microfluidic droplet sorting with a high frequency ultrasound beam.
Lab Chip. 2012 Aug 7;12(15):2736-42. doi: 10.1039/c2lc21123h. Epub 2012 May 29.
9
Particle manipulation in a microfluidic channel using acoustic trap.
Biomed Microdevices. 2011 Aug;13(4):779-88. doi: 10.1007/s10544-011-9548-0.
10
Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW).
Lab Chip. 2009 Oct 21;9(20):2890-5. doi: 10.1039/b910595f. Epub 2009 Aug 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验