Suppr超能文献

使用声阱在微流控通道中进行粒子操纵。

Particle manipulation in a microfluidic channel using acoustic trap.

机构信息

Department of Medical Biotechnology, College of Life Science and Biotechnology, Dongguk University-Seoul, Seoul, 100-715, Republic of Korea.

出版信息

Biomed Microdevices. 2011 Aug;13(4):779-88. doi: 10.1007/s10544-011-9548-0.

Abstract

A high frequency sound beam was employed to explore an experimental method that could control particle motions in a microfluidic device. A 24 MHz single element lead zirconate titanate (PZT) transducer was built to transmit a focused ultrasound of variable duty factors (pulse duration/pulse repetition time), and its 1-3 piezocomposite structure established a tight focusing with f-number (focal depth/aperture size) of one. The transducer was excited by the Chebyshev windowed chirp signal sweeping from 18 MHz to 30 MHz with a 50% of duty factor, in order to ensure that enough sound beams were penetrated into the microfluidic device. The device was fabricated from a polydimethylsiloxane (PDMS) mold, and had a main channel composed of three subchannels among which particles flowed in the middle. A 60~70 μm diameter single droplet in the flow could be trapped near the channel bifurcation, and subsequently diverted into the sheath flow by releasing or shifting the acoustic trap. Hence, the results showed the potential use of a focused sound beam in microfluidic devices, and further suggested that this method could be exploited in the development of ultrasound-based flow cytometry and cell sorting devices.

摘要

采用高频声束探索一种能够控制微流控装置中粒子运动的实验方法。构建了一个 24MHz 的单元件锆钛酸铅(PZT)换能器来传输可变占空比(脉冲持续时间/脉冲重复时间)的聚焦超声,其 1-3 型压电器件复合材料结构建立了紧聚焦,其 f 数(焦深/孔径尺寸)为 1。换能器由切比雪夫加窗线性调频信号激励,从 18MHz 扫频到 30MHz,占空比为 50%,以确保足够的声束穿透微流控装置。该装置由聚二甲基硅氧烷(PDMS)模具制成,具有由三个子通道组成的主通道,其中粒子在中间的子通道中流动。在流中可以捕获 60~70μm 直径的单个液滴,并通过释放或移动声阱将其引导到鞘流中。因此,结果表明聚焦声束在微流控装置中的潜在用途,并进一步表明该方法可用于开发基于超声的流式细胞术和细胞分选装置。

相似文献

1
Particle manipulation in a microfluidic channel using acoustic trap.
Biomed Microdevices. 2011 Aug;13(4):779-88. doi: 10.1007/s10544-011-9548-0.
2
Microfluidic acoustic trapping force and stiffness measurement using viscous drag effect.
Ultrasonics. 2013 Jan;53(1):249-54. doi: 10.1016/j.ultras.2012.06.008. Epub 2012 Jul 6.
4
An integrated microfluidic chip with 40 MHz lead-free transducer for fluid analysis.
Rev Sci Instrum. 2011 Feb;82(2):024903. doi: 10.1063/1.3553575.
5
Microfluidic droplet sorting with a high frequency ultrasound beam.
Lab Chip. 2012 Aug 7;12(15):2736-42. doi: 10.1039/c2lc21123h. Epub 2012 May 29.
8
Detachable Acoustophoretic System for Fluorescence-Activated Sorting at the Single-Droplet Level.
Anal Chem. 2019 Aug 6;91(15):9970-9977. doi: 10.1021/acs.analchem.9b01708. Epub 2019 Jun 26.
9
Ultrasonic alignment of bio-functionalized magnetic beads and live cells in PDMS micro-fluidic channel.
Biomed Microdevices. 2012 Dec;14(6):1077-84. doi: 10.1007/s10544-012-9703-2.

引用本文的文献

1
Precise micro-particle and bubble manipulation by tunable ultrasonic bottle beams.
Ultrason Sonochem. 2021 Jul;75:105602. doi: 10.1016/j.ultsonch.2021.105602. Epub 2021 May 21.
2
A high-throughput acoustic cell sorter.
Lab Chip. 2015 Oct 7;15(19):3870-3879. doi: 10.1039/c5lc00706b.
3
A feasibility study of applications of single beam acoustic tweezers.
Appl Phys Lett. 2014 Oct 27;105(17):173701. doi: 10.1063/1.4900716. Epub 2014 Oct 28.
4
Non-contact multi-particle annular patterning and manipulation with ultrasound microbeam.
Appl Phys Lett. 2014 Jun 16;104(24):244107. doi: 10.1063/1.4884938. Epub 2014 Jun 20.
5
Enhanced size-dependent trapping of particles using microvortices.
Microfluid Nanofluidics. 2013 Nov 1;15(5). doi: 10.1007/s10404-013-1176-y.
6
Microfluidic acoustic trapping force and stiffness measurement using viscous drag effect.
Ultrasonics. 2013 Jan;53(1):249-54. doi: 10.1016/j.ultras.2012.06.008. Epub 2012 Jul 6.
7
Transportation of single cell and microbubbles by phase-shift introduced to standing leaky surface acoustic waves.
Biomicrofluidics. 2011 Dec;5(4):44104-4410410. doi: 10.1063/1.3652872. Epub 2011 Oct 20.

本文引用的文献

1
Calibration of sound forces in acoustic traps.
IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Oct;57(10):2305-10. doi: 10.1109/TUFFC.2010.1691.
2
Transverse acoustic trapping using a gaussian focused ultrasound.
Ultrasound Med Biol. 2010 Feb;36(2):350-5. doi: 10.1016/j.ultrasmedbio.2009.10.005. Epub 2010 Jan 4.
3
Optical trapping of metallic Rayleigh particles.
Opt Lett. 1994 Jul 1;19(13):930-2. doi: 10.1364/ol.19.000930.
4
Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW).
Lab Chip. 2009 Oct 21;9(20):2890-5. doi: 10.1039/b910595f. Epub 2009 Aug 5.
5
Observation of a single-beam gradient force optical trap for dielectric particles.
Opt Lett. 1986 May 1;11(5):288. doi: 10.1364/ol.11.000288.
6
Ultrasonic trapping of small particles by a vibrating rod.
IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Apr;56(4):798-805. doi: 10.1109/TUFFC.2009.1102.
7
Coded excitation system for improving the penetration of real-time phased-array imaging systems.
IEEE Trans Ultrason Ferroelectr Freq Control. 1992;39(3):341-51. doi: 10.1109/58.143168.
8
Chip integrated strategies for acoustic separation and manipulation of cells and particles.
Chem Soc Rev. 2007 Mar;36(3):492-506. doi: 10.1039/b601326k. Epub 2006 Dec 7.
9
Bubble-based acoustic radiation force using chirp insonation to reduce standing wave effects.
Ultrasound Med Biol. 2007 Feb;33(2):263-9. doi: 10.1016/j.ultrasmedbio.2006.07.039.
10
Electrical forces for microscale cell manipulation.
Annu Rev Biomed Eng. 2006;8:425-54. doi: 10.1146/annurev.bioeng.8.061505.095739.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验