Institute for Sustainable Agriculture, CSIC, Apdo. 4084, 14080, Córdoba, Spain.
Planta. 2012 Nov;236(5):1529-45. doi: 10.1007/s00425-012-1709-8. Epub 2012 Jul 24.
In this study, we find and characterize the sources of tolerance to drought amongst an oat (Avena sativa L.) germplasm collection of 174 landraces and cultivars. We used multivariate analysis, non-supervised principal component analyses (PCA) and supervised discriminant function analyses (DFA) to suggest the key mechanism/s responsible for coping with drought stress. Following initial assessment of drought symptoms and area under the drought progress curve, a subset of 14 accessions were selected for further analysis. The collection was assessed for relative water content (RWC), cell membrane stability, stomatal conductance (g (1)), leaf temperature, water use efficiency (WUE), lipid peroxidation, lipoxygenase activity, chlorophyll levels and antioxidant capacity during a drought time course experiment. Without the use of multivariate approaches, it proved difficult to unequivocally link drought tolerance to specific physiological processes in the different resistant oat accessions. These approaches allowed the ranking of many supposed drought tolerance traits in the order of degree of importance within this crop, thereby highlighting those with a causal relationship to drought stress tolerance. Analyses of the loading vectors used to derive the PCA and DFA models indicated that two traits involved in water relations, temperature and RWC together with the area of drought curves, were important indicators of drought tolerance. However, other parameters involved in water use such as g (1) and WUE were less able to discriminate between the accessions. These observations validate our approach which should be seen as representing a cost-effective initial screen that could be subsequently employed to target drought tolerance in segregating populations.
在这项研究中,我们发现并描述了 174 份燕麦种质资源(包括传统品种和栽培品种)对干旱的耐受来源。我们使用多元分析、无监督主成分分析(PCA)和有监督判别函数分析(DFA)来推断应对干旱胁迫的关键机制/特征。在初步评估干旱症状和干旱进程曲线下的面积后,选择了 14 个品系进行进一步分析。在干旱时间过程实验中,对该集合进行相对水含量(RWC)、细胞膜稳定性、气孔导度(g (1))、叶温、水分利用效率(WUE)、脂质过氧化、脂氧合酶活性、叶绿素水平和抗氧化能力的评估。如果不使用多元分析方法,就很难将不同耐干旱燕麦品系中的耐旱性与特定的生理过程明确联系起来。这些方法可以对许多假定的耐旱性特征进行排序,按照在该作物中的重要程度进行排序,从而突出与干旱胁迫耐受性有因果关系的特征。用于推导 PCA 和 DFA 模型的加载向量的分析表明,与水关系、温度和 RWC 相关的两个特征以及干旱曲线的面积是耐旱性的重要指标。然而,其他与水分利用有关的参数,如 g (1)和 WUE,在区分品系方面的能力较差。这些观察结果验证了我们的方法,该方法可以被视为一种具有成本效益的初始筛选方法,随后可以将其用于在分离群体中靶向耐旱性。