Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
Stat Med. 2012 Dec 10;31(28):3444-66. doi: 10.1002/sim.5359. Epub 2012 Jul 24.
In this paper, we consider a full likelihood method to analyze continuous longitudinal responses with non-ignorable non-monotone missing data. We consider a transition probability model for the missingness mechanism. A first-order Markov dependence structure is assumed for both the missingness mechanism and observed data. This process fits the natural data structure in the longitudinal framework. Our main interest is in estimating the parameters of the marginal model and evaluating the missing-at-random assumption in the Effects of Public Information Study, a cancer-related study recently conducted at the University of Pennsylvania. We also present a simulation study to assess the performance of the model.
在本文中,我们考虑了一种全似然方法来分析具有不可忽略的非单调缺失数据的连续纵向响应。我们考虑了缺失机制的转移概率模型。对于缺失机制和观测数据,都假设了一阶马尔可夫依赖性结构。这个过程符合纵向框架中自然的数据结构。我们的主要兴趣是估计边缘模型的参数,并评估宾夕法尼亚大学最近进行的一项癌症相关研究——公共信息研究中的随机缺失假设。我们还进行了一项模拟研究来评估模型的性能。