National Centre for Biological Sciences, Bangalore, India.
Neuropsychopharmacology. 2012 Nov;37(12):2702-11. doi: 10.1038/npp.2012.135. Epub 2012 Jul 25.
As depression-like symptoms are often precipitated by some form of stress, animal models of stress have been used extensively to investigate cellular mechanisms of depression. Despite being implicated in the emotional symptoms of depression, the amygdala has received little attention compared to the hippocampus in the past studies of antidepressant action. Further, these investigations have not taken into account the contrasting effects of chronic stress on the hippocampus vs amygdala. If an antidepressant is to be equally effective in countering the differential effects of stress on both brain areas, then it is faced with the challenge of eliciting contrasting effects in these two structures. We tested this prediction by examining the impact of tianeptine, an antidepressant with proven clinical efficacy, on neurons of the lateral amygdala (LA) and hippocampal area CA1. Tianeptine reduces N-methyl-D-aspartate (NMDA)-receptor-mediated synaptic currents, without affecting α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) currents, in LA neurons. By contrast, tianeptine enhances both NMDA and AMPA currents in area CA1. Tianeptine also lowers action potential firing in LA neurons. As tianeptine modulates cellular metrics that, in addition to mediating amygdalar behavioral output, are also affected by stress, we tested if tianeptine succeeds in countering stress effects in the intact animal. We find that tianeptine prevents two important functional consequences of chronic stress-induced plasticity in the amygdala--dendritic growth and enhanced anxiety-like behavior. These results provide evidence for antidepressant action on amygdalar neurons that are not only distinct from the hippocampus, but also protect against the debilitating impact of stress on amygdalar structure and function.
由于抑郁样症状通常是由某种形式的压力引发的,因此动物应激模型被广泛用于研究抑郁的细胞机制。尽管杏仁核与抑郁的情绪症状有关,但与过去对抗抑郁药作用的研究相比,它在海马体方面受到的关注较少。此外,这些研究没有考虑到慢性应激对海马体和杏仁核的对比影响。如果抗抑郁药要在对抗压力对这两个大脑区域的不同影响方面同样有效,那么它就面临着在这两个结构中引起对比效果的挑战。我们通过检查天奈普汀对侧杏仁核 (LA) 和海马体 CA1 神经元的影响来检验这一预测。天奈普汀可减少 N-甲基-D-天冬氨酸 (NMDA) 受体介导的突触电流,而不影响 LA 神经元中的 α-氨基-3-羟基-5-甲基-4-异恶唑丙酸 (AMPA) 电流。相比之下,天奈普汀增强了 CA1 中的 NMDA 和 AMPA 电流。天奈普汀还降低了 LA 神经元的动作电位放电。由于天奈普汀调节了细胞度量,这些细胞度量除了介导杏仁核行为输出外,还受压力影响,因此我们测试了天奈普汀是否能在完整动物中对抗应激的影响。我们发现,天奈普汀可防止慢性应激诱导的杏仁核可塑性的两个重要功能后果——树突生长和增强的焦虑样行为。这些结果为杏仁核神经元的抗抑郁作用提供了证据,这些作用不仅与海马体不同,而且还能防止压力对杏仁核结构和功能的破坏性影响。