Suppr超能文献

金属离子催化的蛋白质氧化:生化机制与生物学后果

Metal ion-catalyzed oxidation of proteins: biochemical mechanism and biological consequences.

作者信息

Stadtman E R

机构信息

Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892.

出版信息

Free Radic Biol Med. 1990;9(4):315-25. doi: 10.1016/0891-5849(90)90006-5.

Abstract

In the presence of O2, Fe(III) or Cu(II), and an appropriate electron donor, a number of enzymic and nonenzymic oxygen free radical-generating systems are able to catalyze the oxidative modification of proteins. Whereas random, global modification of many different amino acid residues and extensive fragmentation occurs when proteins are exposed to oxygen radicals produced by high energy radiation, only one or a few amino acid residues are modified and relatively little peptide bond cleavage occurs when proteins are exposed to metal-catalyzed oxidation (MCO) systems. The available evidence indicates that the MCO systems catalyze the reduction of Fe(III) to Fe(II) and of O2 to H2O2 and that these products react at metal-binding sites on the protein to produce active oxygen (free radical?) species (viz; OH, ferryl ion) which attack the side chains of amino acid residues at the metal-binding site. Among other modifications, carbonyl derivatives of some amino acid residues are formed; prolyl and arginyl residues are converted to glutamylsemialdehyde residues, lysyl residues are likely converted to 2-amino-adipylsemialdehyde residues; histidyl residues are converted to asparagine and/or aspartyl residues; prolyl residues are converted to glutamyl or pyroglutamyl residues; methionyl residues are converted to methionylsulfoxide residues; and cysteinyl residues to mixed-disulfide derivatives. The biological significance of these metal ion-catalyzed reactions is highlighted by the demonstration: (i) that oxidative modification of proteins "marks" them for degradation by most common proteases and especially by the cytosolic multicatalytic proteinase from mammalian cells; (ii) protein oxidation contributes substantially to the intracellular pool of catalytically inactive and less active, thermolabile forms of enzymes which accumulate in cells during aging, oxidative stress, and in various pathological states, including premature aging diseases (progeria, Werner's syndrome), muscular dystrophy, rheumatoid arthritis, cataractogenesis, chronic alcohol toxicity, pulmonary emphysema, and during tissue injury provoked by ischemia-reperfusion. Furthermore, the metal ion-catalyzed protein oxidation is the basis of biological mechanisms for regulating changes in enzyme levels in response to shifts from anaerobic to aerobic metabolism, and probably from one nutritional state to another. It is also involved in the killing of bacteria by neutrophils and in the loss of neutrophil function following repeated cycles of respiratory burst activity.

摘要

在有氧、铁(III)或铜(II)以及合适的电子供体存在的情况下,许多酶促和非酶促的氧自由基生成系统能够催化蛋白质的氧化修饰。当蛋白质暴露于高能辐射产生的氧自由基时,许多不同氨基酸残基会发生随机的整体修饰并伴有广泛的片段化,而当蛋白质暴露于金属催化氧化(MCO)系统时,只有一个或几个氨基酸残基被修饰,且肽键断裂相对较少。现有证据表明,MCO系统催化铁(III)还原为铁(II)以及氧还原为过氧化氢,并且这些产物在蛋白质上的金属结合位点发生反应,生成活性氧(自由基?)物种(即:羟基自由基、高铁离子),这些物种会攻击金属结合位点处氨基酸残基的侧链。在其他修饰中,一些氨基酸残基会形成羰基衍生物;脯氨酰和精氨酰残基会转化为谷氨酰半醛残基,赖氨酰残基可能转化为2-氨基己二酰半醛残基;组氨酰残基会转化为天冬酰胺和/或天冬氨酰残基;脯氨酰残基会转化为谷氨酰或焦谷氨酰残基;甲硫氨酰残基会转化为甲硫氨酰亚砜残基;半胱氨酰残基会转化为混合二硫键衍生物。这些金属离子催化反应的生物学意义体现在以下方面:(i)蛋白质的氧化修饰会使其被大多数常见蛋白酶,尤其是哺乳动物细胞中的胞质多催化蛋白酶识别并降解;(ii)蛋白质氧化在很大程度上导致细胞内催化活性降低和活性较差、热不稳定的酶形式的积累,这些酶在衰老、氧化应激以及各种病理状态下,包括早衰疾病(早老症、沃纳综合征)、肌肉萎缩症(肌营养不良)、类风湿性关节炎、白内障形成、慢性酒精中毒、肺气肿以及缺血再灌注引发的组织损伤过程中都会积累。此外,金属离子催化的蛋白质氧化是生物机制的基础,该机制可调节酶水平的变化,以应对从无氧代谢到有氧代谢的转变,可能还包括从一种营养状态到另一种营养状态的转变。它还参与中性粒细胞对细菌的杀伤以及中性粒细胞在反复的呼吸爆发活动循环后功能的丧失。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验