Departments of Gastrointestinal Medical Oncology, Houston, USA.
Departments of Thoracic and Cardiovascular Surgery, Houston, USA.
Ann Oncol. 2012 Oct;23(10):2638-2642. doi: 10.1093/annonc/mds210. Epub 2012 Jul 24.
Approximately 25% of patients with esophageal cancer (EC) who undergo preoperative chemoradiation, achieve a pathologic complete response (pathCR). We hypothesized that a model based on clinical parameters could predict pathCR with a high (≥60%) probability.
We analyzed 322 patients with EC who underwent preoperative chemoradiation. All the patients had baseline and postchemoradiation positron emission tomography (PET) and pre- and postchemoradiation endoscopic biopsy. Logistic regression models were used for analysis, and cross-validation via the bootstrap method was carried out to test the model.
The 70 (21.7%) patients who achieved a pathCR lived longer (median overall survival [OS], 79.76 months) than the 252 patients who did not achieve a pathCR (median OS, 39.73 months; OS, P = 0.004; disease-free survival, P = 0.003). In a logistic regression analysis, the following parameters contributed to the prediction model: postchemoradiation PET, postchemoradiation biopsy, sex, histologic tumor grade, and baseline (EUS)T stage. The area under the receiver-operating characteristic curve was 0.72 (95% confidence interval [CI] 0.662-0.787); after the bootstrap validation with 200 repetitions, the bias-corrected AU-ROC was 0.70 (95% CI 0.643-0.728).
Our data suggest that the logistic regression model can predict pathCR with a high probability. This clinical model could complement others (biomarkers) to predict pathCR.
约 25%接受术前放化疗的食管癌(EC)患者可达到病理完全缓解(pathCR)。我们假设基于临床参数的模型可以预测 pathCR 的概率较高(≥60%)。
我们分析了 322 例接受术前放化疗的 EC 患者。所有患者均有基线期和放化疗后正电子发射断层扫描(PET),以及放化疗前和放化疗后内镜活检。采用逻辑回归模型进行分析,并通过自举法进行交叉验证来检验模型。
70 例(21.7%)pathCR 的患者生存期更长(中位总生存期 [OS],79.76 个月),而 252 例未达到 pathCR 的患者生存期更短(中位 OS,39.73 个月;OS,P=0.004;无病生存期,P=0.003)。在逻辑回归分析中,以下参数有助于预测模型:放化疗后 PET、放化疗后活检、性别、组织学肿瘤分级和基线(EUS)T 期。受试者工作特征曲线下面积为 0.72(95%置信区间[CI] 0.662-0.787);经过 200 次重复的自举验证后,校正后的 AUC 为 0.70(95%CI 0.643-0.728)。
我们的数据表明,逻辑回归模型可以高概率预测 pathCR。该临床模型可以补充其他(生物标志物)来预测 pathCR。