Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
Cell Rep. 2012 Feb 23;1(2):133-40. doi: 10.1016/j.celrep.2011.12.003. Epub 2012 Feb 2.
Adaptation under similar selective pressure often leads to comparable phenotypes. A longstanding question is whether such phenotypic repeatability entails similar (parallelism) or different genotypic changes (convergence). To better understand this, we characterized mutations that optimized expression of a plasmid-borne metabolic pathway during laboratory evolution of a bacterium. Expressing these pathway genes was essential for growth but came with substantial costs. Starting from overexpression, replicate populations founded by this bacterium all evolved to reduce expression. Despite this phenotypic repetitiveness, the underlying mutational spectrum was highly diverse. Analysis of these plasmid mutations identified three distinct means to modulate gene expression: (1) reducing the gene copy number, (2) lowering transcript stability, and (3) integration of the pathway-bearing plasmid into the host genome. Our study revealed diverse molecular changes beneath convergence to a simple phenotype. This complex genotype-phenotype mapping presents a challenge to inferring genetic evolution based solely on phenotypic changes.
在相似的选择压力下,适应通常会导致类似的表型。一个长期存在的问题是,这种表型的可重复性是否需要类似的(平行性)或不同的基因型变化(趋同)。为了更好地理解这一点,我们对在细菌的实验室进化过程中优化质粒携带代谢途径表达的突变进行了特征描述。表达这些途径基因对于生长是必不可少的,但代价很高。从过表达开始,由该细菌建立的复制种群都进化为降低表达水平。尽管存在这种表型重复性,但潜在的突变谱却高度多样化。对这些质粒突变的分析确定了三种调节基因表达的不同方法:(1)降低基因拷贝数,(2)降低转录本稳定性,以及(3)将携带途径的质粒整合到宿主基因组中。我们的研究揭示了趋同到简单表型背后的多种分子变化。这种复杂的基因型-表型映射给仅基于表型变化推断遗传进化带来了挑战。