Suppr超能文献

通过发散突变路径优化基因表达。

Optimization of gene expression through divergent mutational paths.

机构信息

Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.

出版信息

Cell Rep. 2012 Feb 23;1(2):133-40. doi: 10.1016/j.celrep.2011.12.003. Epub 2012 Feb 2.

Abstract

Adaptation under similar selective pressure often leads to comparable phenotypes. A longstanding question is whether such phenotypic repeatability entails similar (parallelism) or different genotypic changes (convergence). To better understand this, we characterized mutations that optimized expression of a plasmid-borne metabolic pathway during laboratory evolution of a bacterium. Expressing these pathway genes was essential for growth but came with substantial costs. Starting from overexpression, replicate populations founded by this bacterium all evolved to reduce expression. Despite this phenotypic repetitiveness, the underlying mutational spectrum was highly diverse. Analysis of these plasmid mutations identified three distinct means to modulate gene expression: (1) reducing the gene copy number, (2) lowering transcript stability, and (3) integration of the pathway-bearing plasmid into the host genome. Our study revealed diverse molecular changes beneath convergence to a simple phenotype. This complex genotype-phenotype mapping presents a challenge to inferring genetic evolution based solely on phenotypic changes.

摘要

在相似的选择压力下,适应通常会导致类似的表型。一个长期存在的问题是,这种表型的可重复性是否需要类似的(平行性)或不同的基因型变化(趋同)。为了更好地理解这一点,我们对在细菌的实验室进化过程中优化质粒携带代谢途径表达的突变进行了特征描述。表达这些途径基因对于生长是必不可少的,但代价很高。从过表达开始,由该细菌建立的复制种群都进化为降低表达水平。尽管存在这种表型重复性,但潜在的突变谱却高度多样化。对这些质粒突变的分析确定了三种调节基因表达的不同方法:(1)降低基因拷贝数,(2)降低转录本稳定性,以及(3)将携带途径的质粒整合到宿主基因组中。我们的研究揭示了趋同到简单表型背后的多种分子变化。这种复杂的基因型-表型映射给仅基于表型变化推断遗传进化带来了挑战。

相似文献

1
Optimization of gene expression through divergent mutational paths.
Cell Rep. 2012 Feb 23;1(2):133-40. doi: 10.1016/j.celrep.2011.12.003. Epub 2012 Feb 2.
3
Fast growth increases the selective advantage of a mutation arising recurrently during evolution under metal limitation.
PLoS Genet. 2009 Sep;5(9):e1000652. doi: 10.1371/journal.pgen.1000652. Epub 2009 Sep 18.
4
Diminishing returns epistasis among beneficial mutations decelerates adaptation.
Science. 2011 Jun 3;332(6034):1190-2. doi: 10.1126/science.1203799.
8
Engineering Methylobacterium extorquens for de novo synthesis of the sesquiterpenoid α-humulene from methanol.
Metab Eng. 2015 Nov;32:82-94. doi: 10.1016/j.ymben.2015.09.004. Epub 2015 Sep 11.
10
Bioconversion of methanol to value-added mevalonate by engineered Methylobacterium extorquens AM1 containing an optimized mevalonate pathway.
Appl Microbiol Biotechnol. 2016 Mar;100(5):2171-82. doi: 10.1007/s00253-015-7078-z. Epub 2015 Oct 31.

引用本文的文献

1
Engineered grows well on methoxylated aromatics due to its formaldehyde metabolism and stress response.
mSphere. 2025 Aug 26;10(8):e0017125. doi: 10.1128/msphere.00171-25. Epub 2025 Jul 31.
2
It Takes Two to Make a Thing Go Right: Epistasis, Two-Component Response Systems, and Bacterial Adaptation.
Microorganisms. 2024 Sep 30;12(10):2000. doi: 10.3390/microorganisms12102000.
4
Acetate and glycerol are not uniquely suited for the evolution of cross-feeding in E. coli.
PLoS Comput Biol. 2020 Nov 30;16(11):e1008433. doi: 10.1371/journal.pcbi.1008433. eCollection 2020 Nov.
6
Experimental Design, Population Dynamics, and Diversity in Microbial Experimental Evolution.
Microbiol Mol Biol Rev. 2018 Jul 25;82(3). doi: 10.1128/MMBR.00008-18. Print 2018 Sep.
7
Transposable Elements Mediate Adaptive Debilitation of Flagella in Experimental Escherichia coli Populations.
J Mol Evol. 2017 Jun;84(5-6):279-284. doi: 10.1007/s00239-017-9797-5. Epub 2017 Jun 23.
10
Parallel Mutations Result in a Wide Range of Cooperation and Community Consequences in a Two-Species Bacterial Consortium.
PLoS One. 2016 Sep 12;11(9):e0161837. doi: 10.1371/journal.pone.0161837. eCollection 2016.

本文引用的文献

1
Diminishing returns epistasis among beneficial mutations decelerates adaptation.
Science. 2011 Jun 3;332(6034):1190-2. doi: 10.1126/science.1203799.
2
Genome evolution and adaptation in a long-term experiment with Escherichia coli.
Nature. 2009 Oct 29;461(7268):1243-7. doi: 10.1038/nature08480. Epub 2009 Oct 18.
3
Automated design of synthetic ribosome binding sites to control protein expression.
Nat Biotechnol. 2009 Oct;27(10):946-50. doi: 10.1038/nbt.1568. Epub 2009 Oct 4.
4
Fast growth increases the selective advantage of a mutation arising recurrently during evolution under metal limitation.
PLoS Genet. 2009 Sep;5(9):e1000652. doi: 10.1371/journal.pgen.1000652. Epub 2009 Sep 18.
5
Gene amplification and adaptive evolution in bacteria.
Annu Rev Genet. 2009;43:167-95. doi: 10.1146/annurev-genet-102108-134805.
6
Contribution of gene amplification to evolution of increased antibiotic resistance in Salmonella typhimurium.
Genetics. 2009 Aug;182(4):1183-95. doi: 10.1534/genetics.109.103028. Epub 2009 May 27.
8
Gene expression divergence in yeast is coupled to evolution of DNA-encoded nucleosome organization.
Nat Genet. 2009 Apr;41(4):438-45. doi: 10.1038/ng.324. Epub 2009 Mar 1.
9
Is genetic evolution predictable?
Science. 2009 Feb 6;323(5915):746-51. doi: 10.1126/science.1158997.
10
Optimization of gene expression by natural selection.
Proc Natl Acad Sci U S A. 2009 Jan 27;106(4):1133-8. doi: 10.1073/pnas.0812009106. Epub 2009 Jan 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验