Suppr超能文献

利用工程化甲基杆菌(Methylobacterium extorquens)将 CO 电化学转化为增值产品甲酸盐。

Bioelectrochemical conversion of CO to value added product formate using engineered Methylobacterium extorquens.

机构信息

School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea.

出版信息

Sci Rep. 2018 May 8;8(1):7211. doi: 10.1038/s41598-018-23924-z.

Abstract

The conversion of carbon dioxide to formate is a fundamental step for building C1 chemical platforms. Methylobacterium extorquens AM1 was reported to show remarkable activity converting carbon dioxide into formate. Formate dehydrogenase 1 from M. extorquens AM1 (MeFDH1) was verified as the key responsible enzyme for the conversion of carbon dioxide to formate in this study. Using a 2% methanol concentration for induction, microbial harboring the recombinant MeFDH1 expressing plasmid produced the highest concentration of formate (26.6 mM within 21 hours) in electrochemical reactor. 60 μM of sodium tungstate in the culture medium was optimal for the expression of recombinant MeFDH1 and production of formate (25.7 mM within 21 hours). The recombinant MeFDH1 expressing cells showed maximum formate productivity of 2.53 mM/g-wet cell/hr, which was 2.5 times greater than that of wild type. Thus, M. extorquens AM1 was successfully engineered by expressing MeFDH1 as recombinant enzyme to elevate the production of formate from CO after elucidating key responsible enzyme for the conversion of CO to formate.

摘要

将二氧化碳转化为甲酸盐是构建 C1 化学平台的基本步骤。甲基杆菌 AM1 被报道具有将二氧化碳转化为甲酸盐的显著活性。在本研究中,甲基杆菌 AM1 的甲酸脱氢酶 1(MeFDH1)被证实是将二氧化碳转化为甲酸盐的关键负责酶。使用 2%甲醇浓度进行诱导,携带重组 MeFDH1 表达质粒的微生物在电化学反应器中产生了最高浓度的甲酸盐(21 小时内 26.6mM)。培养基中 60μM 的钨酸钠对重组 MeFDH1 的表达和甲酸盐的生产(21 小时内 25.7mM)最有利。表达重组 MeFDH1 的细胞的最大甲酸盐生产力为 2.53mM/g-湿细胞/小时,比野生型高 2.5 倍。因此,通过表达 MeFDH1 作为重组酶,成功地对甲基杆菌 AM1 进行了工程改造,提高了 CO 转化为甲酸盐的产量,阐明了 CO 转化为甲酸盐的关键负责酶。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/691b/5940731/f3d59f186b8b/41598_2018_23924_Fig1_HTML.jpg

相似文献

4
Structure of recombinant formate dehydrogenase from Methylobacterium extorquens (MeFDH1).
Sci Rep. 2024 Feb 15;14(1):3819. doi: 10.1038/s41598-024-54205-7.
5
Microbial engineering of Methylorubrum extorquens AM1 to enhance CO conversion into formate.
Enzyme Microb Technol. 2023 Aug;168:110264. doi: 10.1016/j.enzmictec.2023.110264. Epub 2023 May 23.
6
Functional investigation of methanol dehydrogenase-like protein XoxF in Methylobacterium extorquens AM1.
Microbiology (Reading). 2010 Aug;156(Pt 8):2575-2586. doi: 10.1099/mic.0.038570-0. Epub 2010 May 6.
9
Sodium formate redirects carbon flux and enhances heterologous mevalonate production in Methylobacterium extorquens AM1.
Biotechnol J. 2023 Feb;18(2):e2200402. doi: 10.1002/biot.202200402. Epub 2023 Jan 2.
10
The tungsten-containing formate dehydrogenase from Methylobacterium extorquens AM1: purification and properties.
Eur J Biochem. 2003 Jan;270(2):325-33. doi: 10.1046/j.1432-1033.2003.03391.x.

引用本文的文献

1
Decoupling Charge Carrier Electroreduction and Enzymatic CO Conversion to Formate Using a Dual-Cell Flow Reactor System.
ACS Omega. 2024 Sep 9;9(38):39353-39364. doi: 10.1021/acsomega.4c02134. eCollection 2024 Sep 24.
2
Identifying a key spot for electron mediator-interaction to tailor CO dehydrogenase's affinity.
Nat Commun. 2024 Mar 28;15(1):2732. doi: 10.1038/s41467-024-46909-1.
3
Structure of recombinant formate dehydrogenase from Methylobacterium extorquens (MeFDH1).
Sci Rep. 2024 Feb 15;14(1):3819. doi: 10.1038/s41598-024-54205-7.
5
Real flue gas CO hydrogenation to formate by an enzymatic reactor using O- and CO-tolerant hydrogenase and formate dehydrogenase.
Front Bioeng Biotechnol. 2023 Oct 3;11:1265272. doi: 10.3389/fbioe.2023.1265272. eCollection 2023.
6
Structure and function relationship of formate dehydrogenases: an overview of recent progress.
IUCrJ. 2023 Sep 1;10(Pt 5):544-554. doi: 10.1107/S2052252523006437.
7
Integrating greenhouse gas capture and C1 biotechnology: a key challenge for circular economy.
Microb Biotechnol. 2022 Jan;15(1):228-239. doi: 10.1111/1751-7915.13991. Epub 2021 Dec 14.
8
Biocatalytic Reduction Reactions from a Chemist's Perspective.
Angew Chem Int Ed Engl. 2021 Mar 8;60(11):5644-5665. doi: 10.1002/anie.202001876. Epub 2020 Nov 3.

本文引用的文献

3
Formate: an Energy Storage and Transport Bridge between Carbon Dioxide and a Formate Fuel Cell in a Single Device.
ChemSusChem. 2015 Nov;8(22):3853-8. doi: 10.1002/cssc.201500958. Epub 2015 Oct 29.
4
Electro-biocatalytic production of formate from carbon dioxide using an oxygen-stable whole cell biocatalyst.
Bioresour Technol. 2015 Jun;185:35-9. doi: 10.1016/j.biortech.2015.02.086. Epub 2015 Feb 27.
5
Assembly and catalysis of molybdenum or tungsten-containing formate dehydrogenases from bacteria.
Biochim Biophys Acta. 2015 Sep;1854(9):1090-100. doi: 10.1016/j.bbapap.2014.12.006. Epub 2014 Dec 13.
6
Reversible interconversion of CO2 and formate by a molybdenum-containing formate dehydrogenase.
J Am Chem Soc. 2014 Nov 5;136(44):15473-6. doi: 10.1021/ja508647u. Epub 2014 Oct 23.
7
Direct and reversible hydrogenation of CO2 to formate by a bacterial carbon dioxide reductase.
Science. 2013 Dec 13;342(6164):1382-5. doi: 10.1126/science.1244758.
9
One-step sequence- and ligation-independent cloning as a rapid and versatile cloning method for functional genomics studies.
Appl Environ Microbiol. 2012 Aug;78(15):5440-3. doi: 10.1128/AEM.00844-12. Epub 2012 May 18.
10
Selective electrocatalytic reduction of CO2 to formate by water-stable iridium dihydride pincer complexes.
J Am Chem Soc. 2012 Mar 28;134(12):5500-3. doi: 10.1021/ja300543s. Epub 2012 Mar 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验