Suppr超能文献

HIV 纵向数据中具有偏度和检测限的病毒载量变化的分段建模。

Segmental modeling of viral load changes for HIV longitudinal data with skewness and detection limits.

机构信息

Department of Epidemiology and Biostatistics, College of Public Health, University of South Florida, Tampa, FL 33612, USA.

出版信息

Stat Med. 2013 Jan 30;32(2):319-34. doi: 10.1002/sim.5527. Epub 2012 Jul 26.

Abstract

Although it is a common practice to analyze complex HIV longitudinal data using nonlinear mixed-effects or nonparametric mixed-effects models in literature, the following issues may standout. (i) In clinical practice, the profile of each subject's viral response may follow a 'broken-stick'-like trajectory, indicating multiple phases of decline and increase in response. Such multiple phases (change points) may be an important indicator to help quantify treatment effect and improve management of patient care. To estimate change points, nonlinear mixed-effects or nonparametric mixed-effects models become a challenge because of complicated structures of model formulations. (ii) The commonly assumed distribution for model random errors is normal, but this assumption may unrealistically obscure important features of subject variations. (iii) The response observations (viral load) may be subject to left censoring due to a limit of detection. Inferential procedures can be complicated dramatically when data with asymmetric (skewed) characteristics and left censoring are observed in conjunction with change points as unknown parameters into models. There is relatively little work concerning all these features simultaneously. This article proposes segmental mixed-effects models with skew distributions for the response process (with left censoring) under a Bayesian framework. A real data example is used to illustrate the proposed methods.

摘要

尽管在文献中使用非线性混合效应或非参数混合效应模型分析复杂的 HIV 纵向数据是一种常见做法,但以下问题可能值得注意。(i) 在临床实践中,每个受试者的病毒反应特征可能遵循“断棍”样轨迹,表明反应存在多个下降和上升阶段。这种多个阶段(变化点)可能是帮助量化治疗效果和改善患者护理管理的重要指标。为了估计变化点,由于模型公式的复杂结构,非线性混合效应或非参数混合效应模型成为一个挑战。(ii) 模型随机误差通常假定为正态分布,但这种假设可能不切实际地掩盖了受试者变异的重要特征。(iii) 由于检测限的存在,反应观测值(病毒载量)可能会受到左删失的影响。当具有不对称(偏态)特征和左删失的数据与模型中的未知参数变化点一起观察时,推断过程会变得非常复杂。目前,关于这些特征同时存在的研究相对较少。本文提出了一种基于贝叶斯框架的带有偏态分布的反应过程(带有左删失)分段混合效应模型。使用真实数据示例说明了所提出的方法。

相似文献

1
Segmental modeling of viral load changes for HIV longitudinal data with skewness and detection limits.
Stat Med. 2013 Jan 30;32(2):319-34. doi: 10.1002/sim.5527. Epub 2012 Jul 26.
2
Piecewise mixed-effects models with skew distributions for evaluating viral load changes: A Bayesian approach.
Stat Methods Med Res. 2015 Dec;24(6):730-46. doi: 10.1177/0962280211426184. Epub 2011 Nov 1.
3
Hierarchical mixture models for longitudinal immunologic data with heterogeneity, non-normality, and missingness.
Stat Methods Med Res. 2017 Feb;26(1):223-247. doi: 10.1177/0962280214544207. Epub 2016 Sep 30.
4
Mixed-effects joint models with skew-normal distribution for HIV dynamic response with missing and mismeasured time-varying covariate.
Int J Biostat. 2012 Nov 26;8(1):/j/ijb.2012.8.issue-1/1557-4679.1426/1557-4679.1426.xml. doi: 10.1515/1557-4679.1426.
5
Bayesian analysis of nonlinear mixed-effects mixture models for longitudinal data with heterogeneity and skewness.
Stat Med. 2014 Jul 20;33(16):2830-49. doi: 10.1002/sim.6136. Epub 2014 Mar 13.
8
Bayesian Two-Part Tobit Models with Left-Censoring, Skewness, and Nonignorable Missingness.
J Biopharm Stat. 2015;25(4):714-30. doi: 10.1080/10543406.2014.920860.
9
Bayesian analysis of piecewise growth mixture models with skew-t distributions: Application to AIDS studies.
J Biopharm Stat. 2017;27(4):691-704. doi: 10.1080/10543406.2016.1269782. Epub 2016 Dec 23.

引用本文的文献

1
Multivariate piecewise joint models with random change-points for skewed-longitudinal and survival data.
J Appl Stat. 2021 Jun 4;49(12):3063-3089. doi: 10.1080/02664763.2021.1935797. eCollection 2022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验