Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands.
Prog Biophys Mol Biol. 2012 Oct-Nov;110(2-3):359-71. doi: 10.1016/j.pbiomolbio.2012.07.008. Epub 2012 Jul 23.
In the ECG, T- and R-wave are concordant during normal sinus rhythm (SR), but discordant after a period of ventricular pacing (VP). Experiments showed that the latter phenomenon, called T-wave memory, is mediated by a mechanical stimulus. By means of a mathematical model, we investigated the hypothesis that slow acting mechano-electrical feedback (MEF) explains T-wave memory. In our model, electromechanical behavior of the left ventricle (LV) was simulated using a series of mechanically and electrically coupled segments. Each segment comprised ionic membrane currents, calcium handling, and excitation-contraction coupling. MEF was incorporated by locally adjusting conductivity of L-type calcium current (g(CaL)) to local external work. In our set-up, g(CaL) could vary up to 25%, 50%, 100% or unlimited amount around its default value. Four consecutive simulations were performed: normal SR (with MEF), acute VP, sustained VP (with MEF), and acutely restored SR. MEF led to T-wave concordance in normal SR and to discordant T-waves acutely after restoring SR. Simulated ECGs with a maximum of 25-50% adaptation closely resembled those during T-wave memory experiments in vivo and also provided the best compromise between optimal systolic and diastolic function. In conclusion, these simulation results indicate that slow acting MEF in the LV can explain a) the relatively small differences in systolic shortening and mechanical work during SR, b) the small dispersion in repolarization time, c) the concordant T-wave during SR, and d) T-wave memory. The physiological distribution in electrophysiological properties, reflected by the concordant T-wave, may serve to optimize cardiac pump function.
在心电图(ECG)中,正常窦性节律(SR)下 T 波和 R 波是一致的,但心室起搏(VP)后会出现不一致。实验表明,这种被称为 T 波记忆的现象是由机械刺激介导的。我们通过数学模型,研究了一种假设,即缓慢作用的机械电反馈(MEF)可以解释 T 波记忆现象。在我们的模型中,左心室(LV)的机电行为通过一系列机械和电耦合的节段进行模拟。每个节段包括离子膜电流、钙处理和兴奋-收缩偶联。通过局部调整 L 型钙电流(g(CaL))的电导率来实现 MEF,以适应局部外部功。在我们的设置中,g(CaL)可以在其默认值的基础上上下调整 25%、50%、100%或无限量。进行了四次连续模拟:正常 SR(具有 MEF)、急性 VP、持续 VP(具有 MEF)和急性恢复 SR。MEF 导致正常 SR 中的 T 波一致,并在恢复 SR 后急性出现不一致的 T 波。模拟 ECG 中,最大适应度为 25-50%,与体内 T 波记忆实验中观察到的 ECG 非常相似,并且在最佳收缩和舒张功能之间提供了最佳的折衷方案。总之,这些模拟结果表明,LV 中的缓慢作用 MEF 可以解释:a)SR 期间收缩缩短和机械功的相对较小差异;b)复极时间的小离散度;c)SR 期间一致的 T 波;以及 d)T 波记忆。反映在一致的 T 波中的电生理特性的生理分布,可能有助于优化心脏泵功能。