Suppr超能文献

哺乳动物视觉皮层中的神经元计算机制。

Mechanisms of neuronal computation in mammalian visual cortex.

机构信息

Section of Neurobiology, Center for Perceptual Systems, University of Texas at Austin, 2401 Speedway, Austin, TX 78705, USA.

出版信息

Neuron. 2012 Jul 26;75(2):194-208. doi: 10.1016/j.neuron.2012.06.011.

Abstract

Orientation selectivity in the primary visual cortex (V1) is a receptive field property that is at once simple enough to make it amenable to experimental and theoretical approaches and yet complex enough to represent a significant transformation in the representation of the visual image. As a result, V1 has become an area of choice for studying cortical computation and its underlying mechanisms. Here we consider the receptive field properties of the simple cells in cat V1--the cells that receive direct input from thalamic relay cells--and explore how these properties, many of which are highly nonlinear, arise. We have found that many receptive field properties of V1 simple cells fall directly out of Hubel and Wiesel's feedforward model when the model incorporates realistic neuronal and synaptic mechanisms, including threshold, synaptic depression, response variability, and the membrane time constant.

摘要

初级视皮层(V1)中的方位选择性是一种感受野特性,它既简单到足以进行实验和理论研究,又复杂到足以代表视觉图像表示的重大转变。因此,V1 已成为研究皮层计算及其基础机制的首选区域。在这里,我们考虑了猫 V1 中的简单细胞的感受野特性——这些细胞直接接收来自丘脑中继细胞的输入——并探讨了这些特性(其中许多是高度非线性的)是如何产生的。我们发现,当模型包含现实的神经元和突触机制(包括阈值、突触抑制、反应变异性和膜时间常数)时,V1 简单细胞的许多感受野特性直接源自 Hubel 和 Wiesel 的前馈模型。

相似文献

1
Mechanisms of neuronal computation in mammalian visual cortex.
Neuron. 2012 Jul 26;75(2):194-208. doi: 10.1016/j.neuron.2012.06.011.
2
Orientation selectivity of thalamic input to simple cells of cat visual cortex.
Nature. 1996 Mar 21;380(6571):249-52. doi: 10.1038/380249a0.
3
An Anatomically Constrained Model of V1 Simple Cells Predicts the Coexistence of Push-Pull and Broad Inhibition.
J Neurosci. 2021 Sep 15;41(37):7797-7812. doi: 10.1523/JNEUROSCI.0928-20.2021. Epub 2021 Jul 28.
4
Direction selectivity of synaptic potentials in simple cells of the cat visual cortex.
J Neurophysiol. 1997 Nov;78(5):2772-89. doi: 10.1152/jn.1997.78.5.2772.
5
Computational modeling of orientation tuning dynamics in monkey primary visual cortex.
J Comput Neurosci. 2000 Mar-Apr;8(2):143-59. doi: 10.1023/a:1008921231855.
6
Suppression without inhibition in visual cortex.
Neuron. 2002 Aug 15;35(4):759-71. doi: 10.1016/s0896-6273(02)00819-x.
8
Learning the invariance properties of complex cells from their responses to natural stimuli.
Eur J Neurosci. 2002 Feb;15(3):475-86. doi: 10.1046/j.0953-816x.2001.01885.x.
9
Feedforward Thalamocortical Connectivity Preserves Stimulus Timing Information in Sensory Pathways.
J Neurosci. 2019 Sep 25;39(39):7674-7688. doi: 10.1523/JNEUROSCI.3165-17.2019. Epub 2019 Jul 3.

引用本文的文献

2
Machine Learning Discovers Numerous New Computational Principles Supporting Elementary Motion Detection.
bioRxiv. 2025 May 29:2025.05.26.656164. doi: 10.1101/2025.05.26.656164.
3
Synaptic dynamics govern spatial integration in mouse visual cortex.
bioRxiv. 2025 May 12:2025.05.11.653343. doi: 10.1101/2025.05.11.653343.
4
Experience-dependent plasticity of multiple receptive field properties in lateral geniculate binocular neurons during the critical period.
Front Cell Neurosci. 2025 Apr 28;19:1574505. doi: 10.3389/fncel.2025.1574505. eCollection 2025.
5
Heterogeneous Effects of Cognitive Arousal on the Contrast Response in Human Visual Cortex.
J Neurosci. 2025 Jun 18;45(25):e0798242025. doi: 10.1523/JNEUROSCI.0798-24.2025.
6
Comparison of orientation encoding across layers within single columns of primate V1 revealed by high-density recordings.
Front Neural Circuits. 2024 Sep 23;18:1399571. doi: 10.3389/fncir.2024.1399571. eCollection 2024.
7
Neuronal and Behavioral Responses to Naturalistic Texture Images in Macaque Monkeys.
J Neurosci. 2024 Oct 16;44(42):e0349242024. doi: 10.1523/JNEUROSCI.0349-24.2024.
8
Subcortical origin of nonlinear sound encoding in auditory cortex.
Curr Biol. 2024 Aug 5;34(15):3405-3415.e5. doi: 10.1016/j.cub.2024.06.057. Epub 2024 Jul 19.
9
Recurrent cortical networks encode natural sensory statistics via sequence filtering.
bioRxiv. 2024 Sep 25:2024.02.24.581890. doi: 10.1101/2024.02.24.581890.
10
A role for ocular dominance in binocular integration.
Curr Biol. 2023 Sep 25;33(18):3884-3895.e5. doi: 10.1016/j.cub.2023.08.019. Epub 2023 Aug 31.

本文引用的文献

1
Adult visual cortical plasticity.
Neuron. 2012 Jul 26;75(2):250-64. doi: 10.1016/j.neuron.2012.06.030.
3
Transcriptional architecture of the primate neocortex.
Neuron. 2012 Mar 22;73(6):1083-99. doi: 10.1016/j.neuron.2012.03.002. Epub 2012 Mar 21.
4
Broadening of cortical inhibition mediates developmental sharpening of orientation selectivity.
J Neurosci. 2012 Mar 21;32(12):3981-91. doi: 10.1523/JNEUROSCI.5514-11.2012.
5
The accuracy of membrane potential reconstruction based on spiking receptive fields.
J Neurophysiol. 2012 Apr;107(8):2143-53. doi: 10.1152/jn.01176.2011. Epub 2012 Jan 25.
6
Parvalbumin-expressing interneurons linearly transform cortical responses to visual stimuli.
Neuron. 2012 Jan 12;73(1):159-70. doi: 10.1016/j.neuron.2011.12.013.
7
Normalization as a canonical neural computation.
Nat Rev Neurosci. 2011 Nov 23;13(1):51-62. doi: 10.1038/nrn3136.
8
Orientation selectivity of synaptic input to neurons in mouse and cat primary visual cortex.
J Neurosci. 2011 Aug 24;31(34):12339-50. doi: 10.1523/JNEUROSCI.2039-11.2011.
9
Fast-spiking interneurons have an initial orientation bias that is lost with vision.
Nat Neurosci. 2011 Jul 12;14(9):1121-3. doi: 10.1038/nn.2890.
10
GABAA inhibition controls response gain in visual cortex.
J Neurosci. 2011 Apr 20;31(16):5931-41. doi: 10.1523/JNEUROSCI.5753-10.2011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验