George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
Wallace H. Coulter School of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
Ann Biomed Eng. 2018 Jan;46(1):135-147. doi: 10.1007/s10439-017-1943-0. Epub 2017 Oct 24.
Several studies exist modeling the Fontan connection to understand its hemodynamic ties to patient outcomes (Chopski in: Experimental and Computational Assessment of Mechanical Circulatory Assistance of a Patient-Specific Fontan Vessel Configuration. Dissertation, 2013; Khiabani et al. in J Biomech 45:2376-2381, 2012; Taylor and Figueroa in Annu Rev Biomed 11:109-134, 2009; Vukicevic et al. in ASAIO J 59:253-260, 2013). The most patient-accurate of these studies include flexible, patient-specific total cavopulmonary connections. This study improves Fontan hemodynamic modeling by validating Fontan model flexibility against a patient-specific bulk compliance value, and employing real-time phase contrast magnetic resonance flow data. The improved model was employed to acquire velocity field information under breath-held, free-breathing, and exercise conditions to investigate the effect of these conditions on clinically important Fontan hemodynamic metrics including power loss and viscous dissipation rate. The velocity data, obtained by stereoscopic particle image velocimetry, was visualized for qualitative three-dimensional flow field comparisons between the conditions. Key hemodynamic metrics were calculated from the velocity data and used to quantitatively compare the flow conditions. The data shows a multi-factorial and extremely patient-specific nature to Fontan hemodynamics.
存在一些研究模型来模拟 Fontan 连接,以了解其与患者预后的血流动力学关系(Chopski 在:《患者特定 Fontan 血管构型的机械循环辅助的实验和计算评估》论文,2013 年;Khiabani 等人在《生物力学杂志》第 45 卷:2376-2381,2012 年;Taylor 和 Figueroa 在《年度生物医学综述》第 11 卷:109-134,2009 年;Vukicevic 等人在《ASAIO 杂志》第 59 卷:253-260,2013 年)。这些研究中最符合患者实际情况的是包括灵活的、患者特定的全腔肺连接。本研究通过将 Fontan 模型的灵活性与患者特定的总体顺应性值进行验证,并采用实时相位对比磁共振流量数据,从而改进了 Fontan 血流动力学模型。该改进后的模型用于在屏气、自由呼吸和运动条件下获取速度场信息,以研究这些条件对包括功率损失和粘性耗散率在内的临床重要 Fontan 血流动力学指标的影响。速度数据通过立体粒子图像测速法获得,并用于对不同条件下的三维流场进行定性比较。关键血流动力学指标是从速度数据中计算得出的,并用于对流动条件进行定量比较。数据显示 Fontan 血流动力学具有多因素和非常个体化的特点。