Suppr超能文献

在葡萄糖限制生长期间,大肠杆菌中底物水平磷酸化的解偶联。

Uncoupling of substrate-level phosphorylation in Escherichia coli during glucose-limited growth.

机构信息

Swammerdam Institute of Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.

出版信息

Appl Environ Microbiol. 2012 Oct;78(19):6908-13. doi: 10.1128/AEM.01507-12. Epub 2012 Jul 27.

Abstract

The respiratory chain of Escherichia coli contains three different cytochrome oxidases. Whereas the cytochrome bo oxidase and the cytochrome bd-I oxidase are well characterized and have been shown to contribute to proton translocation, physiological data suggested a nonelectrogenic functioning of the cytochrome bd-II oxidase. Recently, however, this view was challenged by an in vitro biochemical analysis that showed that the activity of cytochrome bd-II oxidase does contribute to proton translocation with an H(+)/e(-) stoichiometry of 1. Here, we propose that this apparent discrepancy is due to the activities of two alternative catabolic pathways: the pyruvate oxidase pathway for acetate production and a pathway with methylglyoxal as an intermediate for the production of lactate. The ATP yields of these pathways are lower than those of the pathways that have so far always been assumed to catalyze the main catabolic flux under energy-limited growth conditions (i.e., pyruvate dehydrogenase and lactate dehydrogenase). Inclusion of these alternative pathways in the flux analysis of growing E. coli strains for the calculation of the catabolic ATP synthesis rate indicates an electrogenic function of the cytochrome bd-II oxidase, compatible with an H(+)/e(-) ratio of 1. This analysis shows for the first time the extent of bypassing of substrate-level phosphorylation in E. coli under energy-limited growth conditions.

摘要

大肠杆菌的呼吸链包含三种不同的细胞色素氧化酶。虽然细胞色素 bo 氧化酶和细胞色素 bd-I 氧化酶已经得到很好的描述,并被证明有助于质子转移,但生理数据表明细胞色素 bd-II 氧化酶的功能是非电活性的。然而,最近的一项体外生化分析挑战了这一观点,该分析表明细胞色素 bd-II 氧化酶的活性确实有助于质子转移,其 H(+)/e(-)比为 1。在这里,我们提出这种明显的差异是由于两种替代的分解代谢途径的活性:用于生成乙酸盐的丙酮酸氧化酶途径和以甲基乙二醛为中间产物生成乳酸盐的途径。这些途径的 ATP 产率低于迄今为止一直被认为在能量限制生长条件下催化主要分解代谢通量的途径(即丙酮酸脱氢酶和乳酸脱氢酶)。在生长大肠杆菌菌株的通量分析中纳入这些替代途径,以计算分解代谢 ATP 合成率,表明细胞色素 bd-II 氧化酶具有电活性功能,与 H(+)/e(-)比为 1 兼容。该分析首次表明,在能量限制生长条件下,大肠杆菌中底物水平磷酸化的绕过程度。

相似文献

1
Uncoupling of substrate-level phosphorylation in Escherichia coli during glucose-limited growth.
Appl Environ Microbiol. 2012 Oct;78(19):6908-13. doi: 10.1128/AEM.01507-12. Epub 2012 Jul 27.
2
Respiration of Escherichia coli can be fully uncoupled via the nonelectrogenic terminal cytochrome bd-II oxidase.
J Bacteriol. 2009 Sep;191(17):5510-7. doi: 10.1128/JB.00562-09. Epub 2009 Jun 19.
3
Oxygen as Acceptor.
EcoSal Plus. 2015;6(2). doi: 10.1128/ecosalplus.ESP-0012-2015.
4
Aerobic respiratory chain of Escherichia coli is not allowed to work in fully uncoupled mode.
Proc Natl Acad Sci U S A. 2011 Oct 18;108(42):17320-4. doi: 10.1073/pnas.1108217108. Epub 2011 Oct 10.
6
Energetic efficiency of Escherichia coli: effects of mutations in components of the aerobic respiratory chain.
J Bacteriol. 1993 May;175(10):3020-5. doi: 10.1128/jb.175.10.3020-3025.1993.
8
Metabolic flux control at the pyruvate node in an anaerobic Escherichia coli strain with an active pyruvate dehydrogenase.
Appl Environ Microbiol. 2010 Apr;76(7):2107-14. doi: 10.1128/AEM.02545-09. Epub 2010 Jan 29.
10
ATP limitation in a pyruvate formate lyase mutant of Escherichia coli MG1655 increases glycolytic flux to D-lactate.
J Ind Microbiol Biotechnol. 2009 Aug;36(8):1057-62. doi: 10.1007/s10295-009-0589-9. Epub 2009 May 27.

引用本文的文献

1
Intracellular acidification is a hallmark of thymineless death in E. coli.
PLoS Genet. 2022 Oct 24;18(10):e1010456. doi: 10.1371/journal.pgen.1010456. eCollection 2022 Oct.
4
Evidence for Fast Electron Transfer between the High-Spin Haems in Cytochrome bd-I from Escherichia coli.
PLoS One. 2016 May 6;11(5):e0155186. doi: 10.1371/journal.pone.0155186. eCollection 2016.
5
Carbon Monoxide Gas Is Not Inert, but Global, in Its Consequences for Bacterial Gene Expression, Iron Acquisition, and Antibiotic Resistance.
Antioxid Redox Signal. 2016 Jun 10;24(17):1013-28. doi: 10.1089/ars.2015.6501. Epub 2016 Mar 30.
6
Oxygen as Acceptor.
EcoSal Plus. 2015;6(2). doi: 10.1128/ecosalplus.ESP-0012-2015.
7
Elucidation of intrinsic biosynthesis yields using 13C-based metabolism analysis.
Microb Cell Fact. 2014 Mar 19;13(1):42. doi: 10.1186/1475-2859-13-42.
8
Kinase activity of ArcB from Escherichia coli is subject to regulation by both ubiquinone and demethylmenaquinone.
PLoS One. 2013 Oct 7;8(10):e75412. doi: 10.1371/journal.pone.0075412. eCollection 2013.

本文引用的文献

1
On the function of the various quinone species in Escherichia coli.
FEBS J. 2012 Sep;279(18):3364-73. doi: 10.1111/j.1742-4658.2012.08608.x. Epub 2012 May 30.
2
Stoichiometry of proton translocation by respiratory complex I and its mechanistic implications.
Proc Natl Acad Sci U S A. 2012 Mar 20;109(12):4431-6. doi: 10.1073/pnas.1120949109. Epub 2012 Mar 5.
3
Aerobic respiratory chain of Escherichia coli is not allowed to work in fully uncoupled mode.
Proc Natl Acad Sci U S A. 2011 Oct 18;108(42):17320-4. doi: 10.1073/pnas.1108217108. Epub 2011 Oct 10.
4
The cytochrome bd respiratory oxygen reductases.
Biochim Biophys Acta. 2011 Nov;1807(11):1398-413. doi: 10.1016/j.bbabio.2011.06.016. Epub 2011 Jul 1.
5
Respiration of Escherichia coli can be fully uncoupled via the nonelectrogenic terminal cytochrome bd-II oxidase.
J Bacteriol. 2009 Sep;191(17):5510-7. doi: 10.1128/JB.00562-09. Epub 2009 Jun 19.
6
The thermodynamic H+/ATP ratios of the H+-ATPsynthases from chloroplasts and Escherichia coli.
Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3745-50. doi: 10.1073/pnas.0708356105. Epub 2008 Mar 3.
7
The proton pumping stoichiometry of purified mitochondrial complex I reconstituted into proteoliposomes.
Biochim Biophys Acta. 2006 Dec;1757(12):1575-81. doi: 10.1016/j.bbabio.2006.10.001. Epub 2006 Oct 7.
8
Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection.
Mol Syst Biol. 2006;2:2006.0008. doi: 10.1038/msb4100050. Epub 2006 Feb 21.
9
WrbA from Escherichia coli and Archaeoglobus fulgidus is an NAD(P)H:quinone oxidoreductase.
J Bacteriol. 2006 May;188(10):3498-506. doi: 10.1128/JB.188.10.3498-3506.2006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验