The University of Queensland, Queensland Brain Institute, Brisbane, QLD 4072, Australia.
Bioinformatics. 2012 Oct 1;28(19):2540-2. doi: 10.1093/bioinformatics/bts474. Epub 2012 Jul 26.
Genetic correlations are the genome-wide aggregate effects of causal variants affecting multiple traits. Traditionally, genetic correlations between complex traits are estimated from pedigree studies, but such estimates can be confounded by shared environmental factors. Moreover, for diseases, low prevalence rates imply that even if the true genetic correlation between disorders was high, co-aggregation of disorders in families might not occur or could not be distinguished from chance. We have developed and implemented statistical methods based on linear mixed models to obtain unbiased estimates of the genetic correlation between pairs of quantitative traits or pairs of binary traits of complex diseases using population-based case-control studies with genome-wide single-nucleotide polymorphism data. The method is validated in a simulation study and applied to estimate genetic correlation between various diseases from Wellcome Trust Case Control Consortium data in a series of bivariate analyses. We estimate a significant positive genetic correlation between risk of Type 2 diabetes and hypertension of ~0.31 (SE 0.14, P = 0.024).
Our methods, appropriate for both quantitative and binary traits, are implemented in the freely available software GCTA (http://www.complextraitgenomics.com/software/gcta/reml_bivar.html).
Supplementary data are available at Bioinformatics online.
遗传相关是影响多个性状的因果变异在全基因组范围内的综合效应。传统上,通过系谱研究估计复杂性状之间的遗传相关,但这些估计可能受到共同环境因素的干扰。此外,对于疾病来说,低患病率意味着即使疾病之间的真实遗传相关性很高,疾病在家庭中的共同聚集也可能不会发生,或者无法与偶然情况区分开来。我们已经开发并实施了基于线性混合模型的统计方法,以使用基于人群的病例对照研究和全基因组单核苷酸多态性数据,获得定量性状对或复杂疾病的二进制性状对之间遗传相关的无偏估计。该方法在模拟研究中得到验证,并应用于一系列双变量分析中,从惠康信托基金病例对照联盟数据中估计各种疾病之间的遗传相关性。我们估计 2 型糖尿病和高血压风险之间存在显著正遗传相关性,约为 0.31(SE 0.14,P = 0.024)。
我们的方法适用于定量和二进制性状,已在免费软件 GCTA(http://www.complextraitgenomics.com/software/gcta/reml_bivar.html)中实现。
补充数据可在“Bioinformatics”在线获取。