Suppr超能文献

BIGFAM - 无基因型亲属的方差成分分析

BIGFAM - variance components analysis from relatives without genotype.

作者信息

Lee Jaeeun Jerry, Han Buhm

机构信息

Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Republic of Korea.

Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea.

出版信息

Nat Commun. 2025 Jul 1;16(1):5476. doi: 10.1038/s41467-025-60502-0.

Abstract

Estimating variance components of phenotypes provides a fundamental basis for understanding complex traits. However, most existing methods require genotype data, which is costly to obtain and often unavailable, limiting their scalability. To address this limitation, we developed BIGFAM, a genotype-free framework that estimates variance components by genetic, shared environmental, and X chromosome effects using only phenotype data from relative pairs. We analyze variance components in Generation Scotland and UK Biobank datasets and demonstrate that BIGFAM's estimates show high correlation with genotype-based methods (  = 0.85 for heritability and 0.64 for X chromosome components). We identify strong nuclear-family-specific shared environmental effects in dietary-related phenotypes. These results establish a new approach for analyzing variance components across diverse populations without the need for genetic data.

摘要

估计表型的方差成分是理解复杂性状的基础。然而,大多数现有方法都需要基因型数据,而获取这些数据成本高昂且往往无法获得,这限制了它们的可扩展性。为了解决这一限制,我们开发了BIGFAM,这是一个无需基因型的框架,它仅使用亲属对的表型数据,通过遗传、共享环境和X染色体效应来估计方差成分。我们分析了苏格兰一代研究和英国生物银行数据集中的方差成分,并证明BIGFAM的估计值与基于基因型的方法高度相关(遗传力为0.85,X染色体成分相关系数为0.64)。我们在与饮食相关的表型中发现了强烈的核家族特异性共享环境效应。这些结果建立了一种无需遗传数据即可分析不同人群中方差成分的新方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验