School of Computer Science and Software Engineering, The University of Western Australia, Crawley, Western Australia, Australia.
PLoS One. 2012;7(7):e40268. doi: 10.1371/journal.pone.0040268. Epub 2012 Jul 23.
Maintaining bone volume during bone turnover by a BMU is known as bone balance. Balance is required to maintain structural integrity of the bone and is often dysregulated in disease. Consequently, understanding how a BMU controls bone balance is of considerable interest. This paper develops a methodology for identifying potential balance controls within a single cortical BMU. The theoretical framework developed offers the possibility of a directed search for biological processes compatible with the constraints of balance control. We first derive general control constraint equations and then introduce constitutive equations to identify potential control processes that link key variables that describe the state of the BMU. The paper describes specific local bone volume balance controls that may be associated with bone resorption and bone formation. Because bone resorption and formation both involve averaging over time, short-term fluctuations in the environment are removed, leaving the control systems to manage deviations in longer-term trends back towards their desired values. The length of time for averaging is much greater for bone formation than for bone resorption, which enables more filtering of variability in the bone formation environment. Remarkably, the duration for averaging of bone formation may also grow to control deviations in long-term trends of bone formation. Providing there is sufficient bone formation capacity by osteoblasts, this leads to an extraordinarily robust control mechanism that is independent of either osteoblast number or the cellular osteoid formation rate. A complex picture begins to emerge for the control of bone volume. Different control relationships may achieve the same objective, and the 'integration of information' occurring within a BMU may be interpreted as different sets of BMU control systems coming to the fore as different information is supplied to the BMU, which in turn leads to different observable BMU behaviors.
在骨转换过程中,通过一个 BMU 维持骨量被称为骨平衡。平衡是维持骨结构完整性所必需的,并且在疾病中经常失调。因此,了解 BMU 如何控制骨平衡具有相当大的意义。本文开发了一种在单个皮质 BMU 中识别潜在平衡控制的方法。所提出的理论框架提供了一种有针对性的搜索与平衡控制约束相容的生物过程的可能性。我们首先推导出一般的控制约束方程,然后引入本构方程来识别潜在的控制过程,这些过程将描述 BMU 状态的关键变量联系起来。本文描述了可能与骨吸收和骨形成相关的特定局部骨量平衡控制。由于骨吸收和形成都涉及随时间的平均值,因此去除了环境中的短期波动,使控制系统能够管理长期趋势偏离其期望值的情况。骨形成的平均时间长度比骨吸收长得多,这使得骨形成环境中的可变性过滤得更多。值得注意的是,骨形成的平均时间长度也可能会增长,以控制骨形成长期趋势的偏差。只要成骨细胞有足够的骨形成能力,这就会导致一种非常稳健的控制机制,该机制独立于成骨细胞数量或细胞性类骨质形成率。骨量控制的复杂情况开始显现。不同的控制关系可能会达到相同的目标,并且在 BMU 中发生的“信息整合”可以被解释为不同的 BMU 控制系统开始发挥作用,因为不同的信息被提供给 BMU,这反过来又导致不同的可观察到的 BMU 行为。