Suppr超能文献

通过三聚磷酸与壳聚糖的离子凝胶化形成壳聚糖纳米粒子的研究进展。

Insight on the formation of chitosan nanoparticles through ionotropic gelation with tripolyphosphate.

机构信息

Laboratory of Molecular Engineering, Department of Physics, University of Patras, Patras, Greece.

出版信息

Mol Pharm. 2012 Oct 1;9(10):2856-62. doi: 10.1021/mp300162j. Epub 2012 Sep 4.

Abstract

This work reports details pertaining to the formation of chitosan nanoparticles that we prepare by the ionic gelation method. The molecular interactions of the ionic cross-linking of chitosan with tripolyphosphate have been investigated and elucidated by means of all-electron density functional theory. Solvent effects have been taken into account using implicit models. We have identified primary-interaction ionic cross-linking configurations that we define as H-link, T-link, and M-link, and we have quantified the corresponding interaction energies. H-links, which display high interaction energies and are also spatially broadly accessible, are the most probable cross-linking configurations. At close range, proton transfer has been identified, with maximum interaction energies ranging from 12.3 up to 68.3 kcal/mol depending on the protonation of the tripolyphosphate polyanion and the relative coordination of chitosan with tripolyphosphate. On the basis of our results for the linking types (interaction energies and torsion bias), we propose a simple mechanism for their impact on the chitosan/TPP nanoparticle formation process. We introduce the β ratio, which is derived from the commonly used α ratio but is more fundamental since it additionally takes into account structural details of the oligomers.

摘要

本工作报道了通过离子凝胶法制备壳聚糖纳米粒子的详细情况。通过全电子密度泛函理论研究并阐明了壳聚糖与三聚磷酸之间离子交联的分子相互作用。通过使用隐式模型考虑了溶剂效应。我们已经确定了主要相互作用的离子交联构型,我们将其定义为 H 键、T 键和 M 键,并量化了相应的相互作用能。H 键显示出高的相互作用能,并且在空间上也广泛可及,是最可能的交联构型。在近距离内,已经确定了质子转移,最大相互作用能范围从 12.3 到 68.3 kcal/mol,这取决于三聚磷酸多阴离子的质子化和壳聚糖与三聚磷酸的相对配位。基于我们对连接类型(相互作用能和扭转偏置)的研究结果,我们提出了一个简单的机制,用于解释它们对壳聚糖/TPP 纳米颗粒形成过程的影响。我们引入了β比,它是从常用的α比衍生而来的,但更基本,因为它还额外考虑了低聚物的结构细节。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验