Suppr超能文献

酵母细胞对获得性应激抗性的记忆。

Cellular memory of acquired stress resistance in Saccharomyces cerevisiae.

机构信息

Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA.

出版信息

Genetics. 2012 Oct;192(2):495-505. doi: 10.1534/genetics.112.143016. Epub 2012 Jul 30.

Abstract

Cellular memory of past experiences has been observed in several organisms and across a variety of experiences, including bacteria "remembering" prior nutritional status and amoeba "learning" to anticipate future environmental conditions. Here, we show that Saccharomyces cerevisiae maintains a multifaceted memory of prior stress exposure. We previously demonstrated that yeast cells exposed to a mild dose of salt acquire subsequent tolerance to severe doses of H(2)O(2). We set out to characterize the retention of acquired tolerance and in the process uncovered two distinct aspects of cellular memory. First, we found that H(2)O(2) resistance persisted for four to five generations after cells were removed from the prior salt treatment and was transmitted to daughter cells that never directly experienced the pretreatment. Maintenance of this memory did not require nascent protein synthesis after the initial salt pretreatment, but rather required long-lived cytosolic catalase Ctt1p that was synthesized during salt exposure and then distributed to daughter cells during subsequent cell divisions. In addition to and separable from the memory of H(2)O(2) resistance, these cells also displayed a faster gene-expression response to subsequent stress at >1000 genes, representing transcriptional memory. The faster gene-expression response requires the nuclear pore component Nup42p and serves an important function by facilitating faster reacquisition of H(2)O(2) tolerance after a second cycle of salt exposure. Memory of prior stress exposure likely provides a significant advantage to microbial populations living in ever-changing environments.

摘要

过去经验的细胞记忆已在多种生物中观察到,且涉及多种经验,包括细菌“记住”先前的营养状态和变形虫“学习”预测未来的环境条件。在这里,我们表明酿酒酵母保持着先前压力暴露的多方面记忆。我们之前证明,暴露于低盐剂量的酵母细胞获得对高剂量 H2O2 的后续耐受性。我们着手描述获得的耐受性的保留情况,并在此过程中发现了细胞记忆的两个不同方面。首先,我们发现,在细胞从先前的盐处理中去除后,H2O2 抗性持续了四到五代,并且传递给从未直接经历预处理的子细胞。这种记忆的维持不需要初始盐预处理后的新生蛋白质合成,而是需要在盐暴露期间合成的长寿细胞质过氧化氢酶 Ctt1p,然后在随后的细胞分裂过程中分配给子细胞。除了与 H2O2 抗性记忆分开之外,这些细胞还表现出对随后的应激的更快基因表达反应,超过 1000 个基因,代表转录记忆。更快的基因表达反应需要核孔成分 Nup42p,并通过在第二次盐暴露周期后更快地重新获得 H2O2 耐受性来发挥重要功能。先前压力暴露的记忆可能为生活在不断变化的环境中的微生物种群提供了显著优势。

相似文献

1
Cellular memory of acquired stress resistance in Saccharomyces cerevisiae.
Genetics. 2012 Oct;192(2):495-505. doi: 10.1534/genetics.112.143016. Epub 2012 Jul 30.
2
Multiple means to the same end: the genetic basis of acquired stress resistance in yeast.
PLoS Genet. 2011 Nov;7(11):e1002353. doi: 10.1371/journal.pgen.1002353. Epub 2011 Nov 10.
3
Natural variation in yeast reveals multiple paths for acquiring higher stress resistance.
BMC Biol. 2024 Jul 4;22(1):149. doi: 10.1186/s12915-024-01945-7.
5
Epigenetic Transcriptional Memory of Genes Depends on Growth in Glucose and the Tup1 Transcription Factor in .
Genetics. 2017 Aug;206(4):1895-1907. doi: 10.1534/genetics.117.201632. Epub 2017 Jun 12.
6
Linkage mapping of yeast cross protection connects gene expression variation to a higher-order organismal trait.
PLoS Genet. 2018 Apr 12;14(4):e1007335. doi: 10.1371/journal.pgen.1007335. eCollection 2018 Apr.
8
Coordinated gene regulation in the initial phase of salt stress adaptation.
J Biol Chem. 2015 Apr 17;290(16):10163-75. doi: 10.1074/jbc.M115.637264. Epub 2015 Mar 5.
9
HAL2 overexpression induces iron acquisition in bdf1Δ cells and enhances their salt resistance.
Curr Genet. 2017 May;63(2):229-239. doi: 10.1007/s00294-016-0628-9. Epub 2016 Jul 8.
10
Resistance through inhibition: ectopic expression of serine protease inhibitor offers stress tolerance via delayed senescence in yeast cell.
Biochem Biophys Res Commun. 2014 Sep 26;452(3):361-8. doi: 10.1016/j.bbrc.2014.08.075. Epub 2014 Aug 23.

引用本文的文献

1
Trans-eQTL hotspots shape complex traits by modulating cellular states.
Cell Genom. 2025 May 14;5(5):100873. doi: 10.1016/j.xgen.2025.100873. Epub 2025 May 5.
2
Regulated resource reallocation is transcriptionally hard wired into the yeast stress response.
bioRxiv. 2024 Dec 4:2024.12.03.626567. doi: 10.1101/2024.12.03.626567.
3
The Loss of Beneficial Thermal Priming on Global Coral Reefs.
Glob Chang Biol. 2024 Dec;30(12):e17592. doi: 10.1111/gcb.17592.
4
The cAMP-PKA signalling crosstalks with CWI and HOG-MAPK pathways in yeast cell response to osmotic and thermal stress.
Microb Cell. 2024 Mar 15;11:90-105. doi: 10.15698/mic2024.03.818. eCollection 2024.
5
-eQTL hotspots shape complex traits by modulating cellular states.
bioRxiv. 2024 Jul 8:2023.11.14.567054. doi: 10.1101/2023.11.14.567054.
6
Remembering foods and foes: emerging principles of transcriptional memory.
Cell Death Differ. 2025 Jan;32(1):16-26. doi: 10.1038/s41418-023-01200-6. Epub 2023 Aug 10.
8
The environmental stress response regulates ribosome content in cell cycle-arrested .
Front Cell Dev Biol. 2023 Apr 12;11:1118766. doi: 10.3389/fcell.2023.1118766. eCollection 2023.
10
Do microbes have a memory? History-dependent behavior in the adaptation to variable environments.
Front Microbiol. 2022 Oct 10;13:1004488. doi: 10.3389/fmicb.2022.1004488. eCollection 2022.

本文引用的文献

2
Multiple means to the same end: the genetic basis of acquired stress resistance in yeast.
PLoS Genet. 2011 Nov;7(11):e1002353. doi: 10.1371/journal.pgen.1002353. Epub 2011 Nov 10.
3
Synthetic circuit identifies subpopulations with sustained memory of DNA damage.
Genes Dev. 2011 Mar 1;25(5):434-9. doi: 10.1101/gad.1994911.
4
FIMO: scanning for occurrences of a given motif.
Bioinformatics. 2011 Apr 1;27(7):1017-8. doi: 10.1093/bioinformatics/btr064. Epub 2011 Feb 16.
6
Control of eukaryotic gene expression: gene loops and transcriptional memory.
Adv Enzyme Regul. 2011;51(1):118-25. doi: 10.1016/j.advenzreg.2010.10.001. Epub 2010 Oct 29.
7
Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring.
Nature. 2010 Oct 21;467(7318):963-6. doi: 10.1038/nature09491.
9
Exploiting natural variation in Saccharomyces cerevisiae to identify genes for increased ethanol resistance.
Genetics. 2010 Dec;186(4):1197-205. doi: 10.1534/genetics.110.121871. Epub 2010 Sep 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验