Suppr超能文献

核小体占据的动态变化不能预测基因表达的动态变化,但与转录和染色质调节因子有关。

Dynamic changes in nucleosome occupancy are not predictive of gene expression dynamics but are linked to transcription and chromatin regulators.

机构信息

Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA.

出版信息

Mol Cell Biol. 2012 May;32(9):1645-53. doi: 10.1128/MCB.06170-11. Epub 2012 Feb 21.

Abstract

The response to stressful stimuli requires rapid, precise, and dynamic gene expression changes that must be coordinated across the genome. To gain insight into the temporal ordering of genome reorganization, we investigated dynamic relationships between changing nucleosome occupancy, transcription factor binding, and gene expression in Saccharomyces cerevisiae yeast responding to oxidative stress. We applied deep sequencing to nucleosomal DNA at six time points before and after hydrogen peroxide treatment and revealed many distinct dynamic patterns of nucleosome gain and loss. The timing of nucleosome repositioning was not predictive of the dynamics of downstream gene expression change but instead was linked to nucleosome position relative to transcription start sites and specific cis-regulatory elements. We measured genome-wide binding of the stress-activated transcription factor Msn2p over time and found that Msn2p binds different loci with different dynamics. Nucleosome eviction from Msn2p binding sites was common across the genome; however, we show that, contrary to expectation, nucleosome loss occurred after Msn2p binding and in fact required Msn2p. This negates the prevailing model that nucleosomes obscuring Msn2p sites regulate DNA access and must be lost before Msn2p can bind DNA. Together, these results highlight the complexities of stress-dependent chromatin changes and their effects on gene expression.

摘要

应对应激刺激需要快速、精确和动态的基因表达变化,这些变化必须在整个基因组中协调。为了深入了解基因组重排的时间顺序,我们研究了酿酒酵母(Saccharomyces cerevisiae)在应对氧化应激时,核小体占据、转录因子结合和基因表达变化之间的动态关系。我们应用深度测序技术在过氧化氢处理前后的六个时间点对核小体 DNA 进行了研究,揭示了核小体获得和丢失的许多不同动态模式。核小体重新定位的时间与下游基因表达变化的动态无关,但与转录起始位点和特定顺式调控元件的核小体位置有关。我们测量了应激激活转录因子 Msn2p 在一段时间内的全基因组结合情况,发现 Msn2p 以不同的动态结合不同的基因座。核小体从 Msn2p 结合位点的逐出在整个基因组中很常见;然而,我们表明,与预期相反,核小体的丢失发生在 Msn2p 结合之后,实际上需要 Msn2p。这否定了普遍存在的模型,即掩盖 Msn2p 结合位点的核小体调节 DNA 可及性,并且在 Msn2p 可以结合 DNA 之前必须丢失。这些结果共同强调了应激依赖性染色质变化的复杂性及其对基因表达的影响。

相似文献

2
In vivo effects of histone H3 depletion on nucleosome occupancy and position in Saccharomyces cerevisiae.
PLoS Genet. 2012;8(6):e1002771. doi: 10.1371/journal.pgen.1002771. Epub 2012 Jun 21.
4
Genome-wide off-rates reveal how DNA binding dynamics shape transcription factor function.
Mol Syst Biol. 2020 Oct;16(10):e9885. doi: 10.15252/msb.20209885.
5
Chromatin remodelers clear nucleosomes from intrinsically unfavorable sites to establish nucleosome-depleted regions at promoters.
Mol Biol Cell. 2011 Jun 15;22(12):2106-18. doi: 10.1091/mbc.E10-10-0826. Epub 2011 Apr 20.
7
Interaction of transcriptional regulators with specific nucleosomes across the Saccharomyces genome.
Mol Cell. 2009 Sep 24;35(6):889-902. doi: 10.1016/j.molcel.2009.09.011.
9
Nucleosome repositioning underlies dynamic gene expression.
Genes Dev. 2016 Mar 15;30(6):660-72. doi: 10.1101/gad.274910.115. Epub 2016 Mar 10.
10
Nucleosomes Are Essential for Proper Regulation of a Multigated Promoter in Saccharomyces cerevisiae.
Genetics. 2016 Feb;202(2):551-63. doi: 10.1534/genetics.115.183715. Epub 2015 Dec 1.

引用本文的文献

1
Molecular circuit between Aspergillus nidulans transcription factors MsnA and VelB to coordinate fungal stress and developmental responses.
PLoS Genet. 2025 Jul 17;21(7):e1011578. doi: 10.1371/journal.pgen.1011578. eCollection 2025 Jul.
2
Regulated resource reallocation is transcriptionally hard wired into the yeast stress response.
bioRxiv. 2024 Dec 4:2024.12.03.626567. doi: 10.1101/2024.12.03.626567.
3
A study of strong nucleosomes in the human genome.
iScience. 2022 Jun 13;25(7):104593. doi: 10.1016/j.isci.2022.104593. eCollection 2022 Jul 15.
4
The -regulatory codes of response to combined heat and drought stress in .
NAR Genom Bioinform. 2020 Jul 21;2(3):lqaa049. doi: 10.1093/nargab/lqaa049. eCollection 2020 Sep.
5
Changes in nucleosome formation at gene promoters in the archiascomycetous yeast .
AIMS Microbiol. 2017 Mar 16;3(2):136-142. doi: 10.3934/microbiol.2017.2.136. eCollection 2017.
6
Variation of gene expression in plants is influenced by gene architecture and structural properties of promoters.
PLoS One. 2019 Mar 25;14(3):e0212678. doi: 10.1371/journal.pone.0212678. eCollection 2019.
9
Parent-of-origin-dependent nucleosome organization correlates with genomic imprinting in maize.
Genome Res. 2018 Jul;28(7):1020-1028. doi: 10.1101/gr.230201.117. Epub 2018 Jun 14.
10
Major Determinants of Nucleosome Positioning.
Biophys J. 2018 May 22;114(10):2279-2289. doi: 10.1016/j.bpj.2018.03.015. Epub 2018 Apr 6.

本文引用的文献

1
2
Stable and dynamic nucleosome states during a meiotic developmental process.
Genome Res. 2011 Jun;21(6):875-84. doi: 10.1101/gr.117465.110. Epub 2011 Apr 22.
3
Impulse control: temporal dynamics in gene transcription.
Cell. 2011 Mar 18;144(6):886-96. doi: 10.1016/j.cell.2011.02.015.
4
A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces.
Mol Cell. 2011 Feb 18;41(4):480-92. doi: 10.1016/j.molcel.2011.01.015.
5
Antisense expression increases gene expression variability and locus interdependency.
Mol Syst Biol. 2011 Feb 15;7:468. doi: 10.1038/msb.2011.1.
8
In vitro reconstitution of PHO5 promoter chromatin remodeling points to a role for activator-nucleosome competition in vivo.
Mol Cell Biol. 2010 Aug;30(16):4060-76. doi: 10.1128/MCB.01399-09. Epub 2010 Jun 21.
9
A RSC/nucleosome complex determines chromatin architecture and facilitates activator binding.
Cell. 2010 Apr 30;141(3):407-18. doi: 10.1016/j.cell.2010.03.048.
10
Noncanonical transcript forms in yeast and their regulation during environmental stress.
RNA. 2010 Jun;16(6):1256-67. doi: 10.1261/rna.2038810. Epub 2010 Apr 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验