Suppr超能文献

一种用于描述多种酶协同作用于纤维素的粗粒度模型。

A coarse-grained model for synergistic action of multiple enzymes on cellulose.

机构信息

Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.

出版信息

Biotechnol Biofuels. 2012 Aug 1;5(1):55. doi: 10.1186/1754-6834-5-55.

Abstract

BACKGROUND

Degradation of cellulose to glucose requires the cooperative action of three classes of enzymes, collectively known as cellulases. Endoglucanases randomly bind to cellulose surfaces and generate new chain ends by hydrolyzing β-1,4-D-glycosidic bonds. Exoglucanases bind to free chain ends and hydrolyze glycosidic bonds in a processive manner releasing cellobiose units. Then, β-glucosidases hydrolyze soluble cellobiose to glucose. Optimal synergistic action of these enzymes is essential for efficient digestion of cellulose. Experiments show that as hydrolysis proceeds and the cellulose substrate becomes more heterogeneous, the overall degradation slows down. As catalysis occurs on the surface of crystalline cellulose, several factors affect the overall hydrolysis. Therefore, spatial models of cellulose degradation must capture effects such as enzyme crowding and surface heterogeneity, which have been shown to lead to a reduction in hydrolysis rates.

RESULTS

We present a coarse-grained stochastic model for capturing the key events associated with the enzymatic degradation of cellulose at the mesoscopic level. This functional model accounts for the mobility and action of a single cellulase enzyme as well as the synergy of multiple endo- and exo-cellulases on a cellulose surface. The quantitative description of cellulose degradation is calculated on a spatial model by including free and bound states of both endo- and exo-cellulases with explicit reactive surface terms (e.g., hydrogen bond breaking, covalent bond cleavages) and corresponding reaction rates. The dynamical evolution of the system is simulated by including physical interactions between cellulases and cellulose.

CONCLUSIONS

Our coarse-grained model reproduces the qualitative behavior of endoglucanases and exoglucanases by accounting for the spatial heterogeneity of the cellulose surface as well as other spatial factors such as enzyme crowding. Importantly, it captures the endo-exo synergism of cellulase enzyme cocktails. This model constitutes a critical step towards testing hypotheses and understanding approaches for maximizing synergy and substrate properties with a goal of cost effective enzymatic hydrolysis.

摘要

背景

纤维素降解为葡萄糖需要三类酶的协同作用,统称为纤维素酶。内切葡聚糖酶随机结合到纤维素表面,并通过水解β-1,4-D-糖苷键生成新的链末端。外切葡聚糖酶结合到游离链末端,并以连续的方式水解糖苷键,释放纤维二糖单元。然后,β-葡萄糖苷酶将可溶性纤维二糖水解为葡萄糖。这些酶的最佳协同作用对于纤维素的有效消化至关重要。实验表明,随着水解的进行和纤维素底物变得更加不均匀,整体降解速度会减慢。由于催化作用发生在结晶纤维素的表面,因此有几个因素会影响整体水解。因此,纤维素降解的空间模型必须捕捉到酶拥挤和表面不均匀性等影响因素,这些因素已被证明会导致水解速率降低。

结果

我们提出了一种粗粒化随机模型,用于在介观水平上捕获与纤维素酶降解相关的关键事件。该功能模型考虑了单个纤维素酶的迁移和作用,以及纤维素表面上多个内切和外切纤维素酶的协同作用。通过包括内切和外切纤维素酶的游离和结合态,并包含明确的反应表面项(例如氢键断裂、共价键裂解)和相应的反应速率,在空间模型上计算纤维素降解的定量描述。通过包括纤维素酶和纤维素之间的物理相互作用来模拟系统的动态演化。

结论

我们的粗粒化模型通过考虑纤维素表面的空间异质性以及其他空间因素(如酶拥挤),再现了内切葡聚糖酶和外切葡聚糖酶的定性行为。重要的是,它捕捉到了纤维素酶酶混合物的内切-外切协同作用。该模型是朝着测试假说和理解最大化协同作用和底物特性的方法迈出的关键一步,目标是实现具有成本效益的酶解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/385b/3475064/618e61fd9dde/1754-6834-5-55-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验