Suppr超能文献

纤维素酶解的机理模型。

A mechanistic model of the enzymatic hydrolysis of cellulose.

机构信息

Energy Biosciences Institute, Department of Chemical Engineering, University of California-Berkeley, 94720, USA.

出版信息

Biotechnol Bioeng. 2010 Sep 1;107(1):37-51. doi: 10.1002/bit.22789.

Abstract

A detailed mechanistic model of enzymatic cellulose hydrolysis has been developed. The behavior of individual cellulase enzymes and parameters describing the cellulose surface properties are included. Results obtained for individual enzymes (T. reesei endoglucanase 2 and cellobiohydrolase I) and systems with both enzymes present are compared with experimental literature data. The model was sensitive to cellulase-accessible surface area; the EG2-CBHI synergy observed experimentally was only predicted at a sufficiently high cellulose surface area. Enzyme crowding, which is more apparent at low surface areas, resulted in differences between predicted and experimental rates of hydrolysis. Model predictions also indicated that the observed decrease in hydrolysis rates following the initial rate of rapid hydrolysis is not solely caused by product inhibition and/or thermal deactivation. Surface heterogeneities, which are not accounted for in this work, may play a role in decreasing the hydrolysis rate. The importance of separating the enzyme adsorption and complexation steps is illustrated by the model's sensitivity to the rate of formation of enzyme-substrate complexes on the cellulose surface.

摘要

已经开发出一种详细的酶促纤维素水解的机理模型。该模型包括了单个纤维素酶的行为和描述纤维素表面特性的参数。将单个酶(里氏木霉内切葡聚糖酶 2 和纤维二糖水解酶 I)和同时存在两种酶的系统的结果与实验文献数据进行了比较。该模型对纤维素酶可及表面积敏感;在足够高的纤维素表面积下,才预测到实验中观察到的 EG2-CBHI 协同作用。在低表面积下更为明显的酶拥挤现象导致水解速率的预测值与实验值之间存在差异。模型预测还表明,观察到的初始快速水解后水解速率下降不仅仅是由于产物抑制和/或热失活引起的。在这项工作中没有考虑到的表面非均质性可能在降低水解速率方面发挥作用。通过模型对纤维素表面上酶-底物复合物形成速率的敏感性,说明了将酶吸附和络合步骤分开的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验