Department of Bionanoscience, Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands.
Nat Commun. 2011 Aug 23;2:439. doi: 10.1038/ncomms1450.
The double-stranded nature of DNA links its replication, transcription and repair to rotational motion and torsional strain. Magnetic tweezers (MT) are a powerful single-molecule technique to apply both forces and torques to individual DNA or RNA molecules. However, conventional MT do not track rotational motion directly and constrain the free rotation of the nucleic acid tether. Here we present freely orbiting MT (FOMT) that allow the measurement of equilibrium fluctuations and changes in the twist of tethered nucleic acid molecules. Using a precisely aligned vertically oriented magnetic field, FOMT enable tracking of the rotation angle from straight forward (x,y)-position tracking and permits the application of calibrated stretching forces, without biasing the tether's free rotation. We utilize FOMT to measure the force-dependent torsional stiffness of DNA from equilibrium rotational fluctuations and to follow the assembly of recombination protein A filaments on DNA.
DNA 的双链性质将其复制、转录和修复与旋转运动和扭转应变联系起来。磁镊(MT)是一种强大的单分子技术,可以向单个 DNA 或 RNA 分子施加力和扭矩。然而,传统的 MT 并不能直接跟踪旋转运动,并且限制了核酸系链的自由旋转。在这里,我们提出了自由轨道磁镊(FOMT),它允许测量束缚核酸分子的扭转平衡波动和变化。使用精确对准的垂直磁场,FOMT 能够从直接的(x,y)-位置跟踪中跟踪旋转角度,并允许施加校准的拉伸力,而不会使系链的自由旋转产生偏差。我们利用 FOMT 从平衡旋转波动中测量 DNA 的力依赖性扭转刚度,并跟踪重组蛋白 A 纤维在 DNA 上的组装。