Suppr超能文献

GOLEM:带显式水分子的自动化、稳健的冷冻电镜引导配体对接

GOLEM: Automated and Robust Cryo-EM-Guided Ligand Docking with Explicit Water Molecules.

机构信息

Theoretical and Computational Biophysics Group, NIH Resource Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.

出版信息

J Chem Inf Model. 2024 Jul 22;64(14):5680-5690. doi: 10.1021/acs.jcim.4c00917. Epub 2024 Jul 11.

Abstract

A detailed understanding of ligand-protein interaction is essential for developing rational drug-design strategies. In recent years, technological advances in cryo-electron microscopy (cryo-EM) brought a new era to the structural determination of biological macromolecules and assemblies at high resolution, marking cryo-EM as a promising tool for studying ligand-protein interactions. However, even in high-resolution cryo-EM results, the densities for the bound small-molecule ligands are often of lower quality due to their relatively dynamic and flexible nature, frustrating their accurate coordinate assignment. To address the challenge of ligand modeling in cryo-EM maps, here we report the development of GOLEM (Genetic Optimization of Ligands in Experimental Maps), an automated and robust ligand docking method that predicts a ligand's pose and conformation in cryo-EM maps. GOLEM employs a Lamarckian genetic algorithm to perform a hybrid global/local search for exploring the ligand's conformational, orientational, and positional space. As an important feature, GOLEM explicitly considers water molecules and places them at optimal positions and orientations. GOLEM takes into account both molecular energetics and the correlation with the cryo-EM maps in its scoring function to optimally place the ligand. We have validated GOLEM against multiple cryo-EM structures with a wide range of map resolutions and ligand types, returning ligand poses in excellent agreement with the densities. As a VMD plugin, GOLEM is free of charge and accessible to the community. With these features, GOLEM will provide a valuable tool for ligand modeling in cryo-EM efforts toward drug discovery.

摘要

深入了解配体-蛋白相互作用对于开发合理的药物设计策略至关重要。近年来,低温电子显微镜(cryo-EM)技术的进步为生物大分子和组装体的高分辨率结构测定带来了新的时代,标志着 cryo-EM 成为研究配体-蛋白相互作用的有前途的工具。然而,即使在高分辨率的 cryo-EM 结果中,由于结合的小分子配体的相对动态和灵活性质,其密度通常质量较低,使其准确的坐标分配受挫。为了解决 cryo-EM 图谱中配体建模的挑战,我们在这里报告了 GOLEM(实验图谱中配体的遗传优化)的开发,这是一种自动化和强大的配体对接方法,可预测配体在 cryo-EM 图谱中的构象和构象。GOLEM 采用拉马克遗传算法对配体的构象、取向和位置空间进行混合全局/局部搜索。作为一个重要的特点,GOLEM 明确考虑了水分子,并将其放置在最佳位置和取向。GOLEM 在其评分函数中考虑了分子能量学和与 cryo-EM 图谱的相关性,以最佳地放置配体。我们已经使用多种具有广泛图谱分辨率和配体类型的 cryo-EM 结构对 GOLEM 进行了验证,返回的配体构象与密度非常吻合。作为 VMD 插件,GOLEM 是免费的,并可供社区使用。凭借这些功能,GOLEM 将为 cryo-EM 努力中的配体建模提供有价值的工具,以实现药物发现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验