Suppr超能文献

形态发生的上皮机器及其在器官组装和组织工程中的潜在应用。

Epithelial machines of morphogenesis and their potential application in organ assembly and tissue engineering.

机构信息

Department of Bioengineering, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA 15213, USA.

出版信息

Biomech Model Mechanobiol. 2012 Nov;11(8):1109-21. doi: 10.1007/s10237-012-0423-6. Epub 2012 Aug 2.

Abstract

Sheets of embryonic epithelial cells coordinate their efforts to create diverse tissue structures such as pits, grooves, tubes, and capsules that lead to organ formation. Such cells can use a number of cell behaviors including contractility, proliferation, and directed movement to create these structures. By contrast, tissue engineers and researchers in regenerative medicine seeking to produce organs for repair or replacement therapy can combine cells with synthetic polymeric scaffolds. Tissue engineers try to achieve these goals by shaping scaffold geometry in such a way that cells embedded within these scaffold self-assemble to form a tissue, for instance aligning to synthetic fibers, and assembling native extracellular matrix to form the desired tissue-like structure. Although self-assembly is a dominant process that guides tissue assembly both within the embryo and within artificial tissue constructs, we know little about these critical processes. Here, we compare and contrast strategies of tissue assembly used by embryos to those used by engineers during epithelial morphogenesis and highlight opportunities for future applications of developmental biology in the field of tissue engineering.

摘要

胚胎上皮细胞层协调其努力,以创建各种组织结构,如坑、槽、管和囊,从而导致器官形成。这些细胞可以使用多种细胞行为,包括收缩、增殖和定向运动来创建这些结构。相比之下,组织工程学和再生医学领域的研究人员为了修复或替代治疗而寻求产生器官,可以将细胞与合成聚合物支架结合使用。组织工程师试图通过以下方式实现这些目标:以细胞可以嵌入支架内的方式来塑造支架的几何形状,使这些支架自组装形成组织,例如沿着合成纤维对齐,并组装天然细胞外基质以形成所需的组织样结构。尽管自组装是指导胚胎内和人工组织构建内组织组装的主要过程,但我们对这些关键过程知之甚少。在这里,我们比较和对比胚胎用于组织组装的策略与工程师在上皮形态发生过程中使用的策略,并强调发育生物学在组织工程领域未来应用的机会。

相似文献

1
Epithelial machines of morphogenesis and their potential application in organ assembly and tissue engineering.
Biomech Model Mechanobiol. 2012 Nov;11(8):1109-21. doi: 10.1007/s10237-012-0423-6. Epub 2012 Aug 2.
2
Concise review: can the intrinsic power of branching morphogenesis be used for engineering epithelial tissues and organs?
Stem Cells Transl Med. 2013 Dec;2(12):993-1000. doi: 10.5966/sctm.2013-0076. Epub 2013 Nov 4.
3
Tubular collagen scaffolds with radial elasticity for hollow organ regeneration.
Acta Biomater. 2017 Apr 1;52:1-8. doi: 10.1016/j.actbio.2017.02.005. Epub 2017 Feb 5.
4
Self-organization and branching morphogenesis of primary salivary epithelial cells.
Tissue Eng. 2007 Apr;13(4):721-35. doi: 10.1089/ten.2006.0123.
5
The development of a bioengineered organ germ method.
Nat Methods. 2007 Mar;4(3):227-30. doi: 10.1038/nmeth1012. Epub 2007 Feb 18.
6
Calcium as a signal integrator in developing epithelial tissues.
Phys Biol. 2018 May 16;15(5):051001. doi: 10.1088/1478-3975/aabb18.
7
Modular GAG-matrices to promote mammary epithelial morphogenesis in vitro.
Biomaterials. 2017 Jan;112:20-30. doi: 10.1016/j.biomaterials.2016.10.007. Epub 2016 Oct 6.
8
Decellularization Strategies for Regenerative Medicine: From Processing Techniques to Applications.
Biomed Res Int. 2017;2017:9831534. doi: 10.1155/2017/9831534. Epub 2017 Apr 30.
9
Sculpting organs: mechanical regulation of tissue development.
Annu Rev Biomed Eng. 2012;14:129-54. doi: 10.1146/annurev-bioeng-071811-150043. Epub 2012 Apr 18.
10
Engineering de novo assembly of fetal pulmonary organoids.
Tissue Eng Part A. 2014 Nov;20(21-22):2892-907. doi: 10.1089/ten.TEA.2014.0085. Epub 2014 Jun 25.

引用本文的文献

1
Tubular organ epithelialisation.
J Tissue Eng. 2016 Dec 19;7:2041731416683950. doi: 10.1177/2041731416683950. eCollection 2016 Jan-Dec.
2
Tissue-specific roles of Fgfr2 in development of the external genitalia.
Development. 2015 Jun 15;142(12):2203-12. doi: 10.1242/dev.119891.

本文引用的文献

1
On integrating experimental and theoretical models to determine physical mechanisms of morphogenesis.
Biosystems. 2012 Sep;109(3):412-9. doi: 10.1016/j.biosystems.2012.05.001. Epub 2012 May 14.
2
Morphogenesis as a macroscopic self-organizing process.
Biosystems. 2012 Sep;109(3):262-79. doi: 10.1016/j.biosystems.2012.05.003. Epub 2012 May 17.
3
Triggering a cell shape change by exploiting preexisting actomyosin contractions.
Science. 2012 Mar 9;335(6073):1232-5. doi: 10.1126/science.1217869. Epub 2012 Feb 9.
4
Degradable segmented polyurethane elastomers for bone tissue engineering: effect of polycaprolactone content.
J Biomater Sci Polym Ed. 2013;24(1):77-93. doi: 10.1163/156856212X624985. Epub 2012 May 11.
5
Enhanced osteoblast responses to poly(methyl methacrylate)/hydroxyapatite electrospun nanocomposites for bone tissue engineering.
J Biomater Sci Polym Ed. 2013;24(1):61-76. doi: 10.1163/156856212X623526. Epub 2012 May 11.
7
Epithelial machines that shape the embryo.
Trends Cell Biol. 2012 Feb;22(2):82-7. doi: 10.1016/j.tcb.2011.10.005. Epub 2011 Nov 28.
8
Growing up is stressful: biophysical laws of morphogenesis.
Curr Opin Genet Dev. 2011 Oct;21(5):647-52. doi: 10.1016/j.gde.2011.09.005. Epub 2011 Oct 6.
9
Dynamics of actomyosin contractile activity during epithelial morphogenesis.
Curr Opin Cell Biol. 2011 Oct;23(5):531-9. doi: 10.1016/j.ceb.2011.06.002. Epub 2011 Jul 20.
10
Force generation, transmission, and integration during cell and tissue morphogenesis.
Annu Rev Cell Dev Biol. 2011;27:157-84. doi: 10.1146/annurev-cellbio-100109-104027. Epub 2011 Jul 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验