Suppr超能文献

在斑马雀听觉前脑中检测声音异常时的大规模同步活动。

Large-scale synchronized activity during vocal deviance detection in the zebra finch auditory forebrain.

机构信息

Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, D-82319 Seewiesen, Germany.

出版信息

J Neurosci. 2012 Aug 1;32(31):10594-608. doi: 10.1523/JNEUROSCI.6045-11.2012.

Abstract

Auditory systems bias responses to sounds that are unexpected on the basis of recent stimulus history, a phenomenon that has been widely studied using sequences of unmodulated tones (mismatch negativity; stimulus-specific adaptation). Such a paradigm, however, does not directly reflect problems that neural systems normally solve for adaptive behavior. We recorded multiunit responses in the caudomedial auditory forebrain of anesthetized zebra finches (Taeniopygia guttata) at 32 sites simultaneously, to contact calls that recur probabilistically at a rate that is used in communication. Neurons in secondary, but not primary, auditory areas respond preferentially to calls when they are unexpected (deviant) compared with the same calls when they are expected (standard). This response bias is predominantly due to sites more often not responding to standard events than to deviant events. When two call stimuli alternate between standard and deviant roles, most sites exhibit a response bias to deviant events of both stimuli. This suggests that biases are not based on a use-dependent decrease in response strength but involve a more complex mechanism that is sensitive to auditory deviance per se. Furthermore, between many secondary sites, responses are tightly synchronized, a phenomenon that is driven by internal neuronal interactions rather than by the timing of stimulus acoustic features. We hypothesize that this deviance-sensitive, internally synchronized network of neurons is involved in the involuntary capturing of attention by unexpected and behaviorally potentially relevant events in natural auditory scenes.

摘要

听觉系统会根据最近的刺激历史对出乎意料的声音做出反应,这种现象已经被广泛研究,使用的是未调制音调的序列(失匹配负波;刺激特异性适应)。然而,这种范式并不能直接反映神经系统为适应行为而正常解决的问题。我们在麻醉的斑胸草雀(Taeniopygia guttata)的听觉前脑的尾侧中脑同时记录了 32 个部位的多单位反应,这些反应是针对以用于通讯的概率重复出现的接触叫声的。与预期的叫声(标准)相比,次级听觉区域的神经元(而非初级听觉区域的神经元)对出乎意料的叫声(偏差)更有反应。与标准事件相比,当标准事件更频繁地不引起反应时,这种反应偏差主要归因于大多数位点对偏差事件的反应偏好。当两个叫声刺激在标准和偏差角色之间交替时,大多数位点对两种刺激的偏差事件表现出反应偏差。这表明偏差不是基于反应强度的使用依赖性降低,而是涉及一种更复杂的机制,这种机制对听觉偏差本身敏感。此外,在许多次级位点之间,反应是紧密同步的,这种现象是由内部神经元相互作用驱动的,而不是由刺激声学特征的时间驱动的。我们假设,这种对偏差敏感的、内部同步的神经元网络参与了对自然听觉场景中意外的、潜在与行为相关的事件的无意识捕捉注意力的过程。

相似文献

1
Large-scale synchronized activity during vocal deviance detection in the zebra finch auditory forebrain.
J Neurosci. 2012 Aug 1;32(31):10594-608. doi: 10.1523/JNEUROSCI.6045-11.2012.
2
Principles of auditory processing differ between sensory and premotor structures of the songbird forebrain.
J Neurophysiol. 2017 Mar 1;117(3):1266-1280. doi: 10.1152/jn.00462.2016. Epub 2016 Dec 28.
3
Hierarchical emergence of sequence sensitivity in the songbird auditory forebrain.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2016 Mar;202(3):163-83. doi: 10.1007/s00359-016-1070-7. Epub 2016 Feb 10.
4
Familiar But Unexpected: Effects of Sound Context Statistics on Auditory Responses in the Songbird Forebrain.
J Neurosci. 2017 Dec 6;37(49):12006-12017. doi: 10.1523/JNEUROSCI.5722-12.2017. Epub 2017 Nov 8.
5
7
Neurotelemetry Reveals Putative Predictive Activity in HVC during Call-Based Vocal Communications in Zebra Finches.
J Neurosci. 2020 Aug 5;40(32):6219-6227. doi: 10.1523/JNEUROSCI.2664-19.2020. Epub 2020 Jul 13.
8
Functional connectivity between auditory areas field L and CLM and song system nucleus HVC in anesthetized zebra finches.
J Neurophysiol. 2007 Nov;98(5):2747-64. doi: 10.1152/jn.00294.2007. Epub 2007 Sep 26.
9
ZENK expression following conspecific and heterospecific playback in the zebra finch auditory forebrain.
Behav Brain Res. 2017 Jul 28;331:151-158. doi: 10.1016/j.bbr.2017.05.023. Epub 2017 May 12.
10
Neural representation of spectral and temporal features of song in the auditory forebrain of zebra finches as revealed by functional MRI.
Eur J Neurosci. 2007 Nov;26(9):2613-26. doi: 10.1111/j.1460-9568.2007.05865.x. Epub 2007 Oct 23.

引用本文的文献

1
Mismatch Responses Evoked by Sound Pattern Violation in the Songbird Forebrain Suggest Common Auditory Processing With Human.
Front Physiol. 2022 Mar 3;13:822098. doi: 10.3389/fphys.2022.822098. eCollection 2022.
2
Automatic Sensory Predictions: A Review of Predictive Mechanisms in the Brain and Their Link to Conscious Processing.
Front Hum Neurosci. 2021 Aug 18;15:702520. doi: 10.3389/fnhum.2021.702520. eCollection 2021.
3
Neurotelemetry Reveals Putative Predictive Activity in HVC during Call-Based Vocal Communications in Zebra Finches.
J Neurosci. 2020 Aug 5;40(32):6219-6227. doi: 10.1523/JNEUROSCI.2664-19.2020. Epub 2020 Jul 13.
4
Statistical learning of transition patterns in the songbird auditory forebrain.
Sci Rep. 2020 May 12;10(1):7848. doi: 10.1038/s41598-020-64671-4.
5
Neuronal Encoding in a High-Level Auditory Area: From Sequential Order of Elements to Grammatical Structure.
J Neurosci. 2019 Jul 31;39(31):6150-6161. doi: 10.1523/JNEUROSCI.2767-18.2019. Epub 2019 May 30.
6
Neurophysiology of Avian Sleep: Comparing Natural Sleep and Isoflurane Anesthesia.
Front Neurosci. 2019 Mar 28;13:262. doi: 10.3389/fnins.2019.00262. eCollection 2019.
7
Neural Correlate of Transition Violation and Deviance Detection in the Songbird Auditory Forebrain.
Front Syst Neurosci. 2018 Oct 9;12:46. doi: 10.3389/fnsys.2018.00046. eCollection 2018.
8
Adaptive coding for dynamic sensory inference.
Elife. 2018 Jul 10;7:e32055. doi: 10.7554/eLife.32055.
9
Vocal exchanges during pair formation and maintenance in the zebra finch ().
Front Zool. 2017 Feb 23;14:13. doi: 10.1186/s12983-017-0197-x. eCollection 2017.
10
Hierarchical emergence of sequence sensitivity in the songbird auditory forebrain.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2016 Mar;202(3):163-83. doi: 10.1007/s00359-016-1070-7. Epub 2016 Feb 10.

本文引用的文献

1
Stimulus-specific adaptation: can it be a neural correlate of behavioral habituation?
J Neurosci. 2011 Dec 7;31(49):17811-20. doi: 10.1523/JNEUROSCI.4790-11.2011.
2
Two-dimensional adaptation in the auditory forebrain.
J Neurophysiol. 2011 Oct;106(4):1841-61. doi: 10.1152/jn.00905.2010. Epub 2011 Jul 13.
3
Dynamics of communal vocalizations in a social songbird, the zebra finch (Taeniopygia guttata).
J Acoust Soc Am. 2011 Jun;129(6):4037-46. doi: 10.1121/1.3570959.
4
Emergence of learned categorical representations within an auditory forebrain circuit.
J Neurosci. 2011 Feb 16;31(7):2595-606. doi: 10.1523/JNEUROSCI.3930-10.2011.
6
Stimulus-specific adaptation in the auditory thalamus of the anesthetized rat.
PLoS One. 2010 Nov 19;5(11):e14071. doi: 10.1371/journal.pone.0014071.
7
Laminar and columnar auditory cortex in avian brain.
Proc Natl Acad Sci U S A. 2010 Jul 13;107(28):12676-81. doi: 10.1073/pnas.1006645107. Epub 2010 Jun 28.
8
Neural processing of short-term recurrence in songbird vocal communication.
PLoS One. 2010 Jun 17;5(6):e11129. doi: 10.1371/journal.pone.0011129.
9
Neural adaptation to tone sequences in the songbird forebrain: patterns, determinants, and relation to the build-up of auditory streaming.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2010 Aug;196(8):543-57. doi: 10.1007/s00359-010-0542-4. Epub 2010 Jun 19.
10
Representations of conspecific song by starling secondary forebrain auditory neurons: toward a hierarchical framework.
J Neurophysiol. 2010 Mar;103(3):1195-208. doi: 10.1152/jn.00464.2009. Epub 2009 Dec 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验