Suppr超能文献

电化学活性生物膜:事实与虚构。综述。

Electrochemically active biofilms: facts and fiction. A review.

机构信息

The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA.

出版信息

Biofouling. 2012;28(8):789-812. doi: 10.1080/08927014.2012.710324.

Abstract

This review examines the electrochemical techniques used to study extracellular electron transfer in the electrochemically active biofilms that are used in microbial fuel cells and other bioelectrochemical systems. Electrochemically active biofilms are defined as biofilms that exchange electrons with conductive surfaces: electrodes. Following the electrochemical conventions, and recognizing that electrodes can be considered reactants in these bioelectrochemical processes, biofilms that deliver electrons to the biofilm electrode are called anodic, ie electrode-reducing, biofilms, while biofilms that accept electrons from the biofilm electrode are called cathodic, ie electrode-oxidizing, biofilms. How to grow these electrochemically active biofilms in bioelectrochemical systems is discussed and also the critical choices made in the experimental setup that affect the experimental results. The reactor configurations used in bioelectrochemical systems research are also described and the authors demonstrate how to use selected voltammetric techniques to study extracellular electron transfer in bioelectrochemical systems. Finally, some critical concerns with the proposed electron transfer mechanisms in bioelectrochemical systems are addressed together with the prospects of bioelectrochemical systems as energy-converting and energy-harvesting devices.

摘要

本综述考察了用于研究微生物燃料电池和其他生物电化学系统中电化学活性生物膜中细胞外电子转移的电化学技术。电化学活性生物膜被定义为与导电表面(电极)交换电子的生物膜。根据电化学惯例,并认识到在这些生物电化学过程中电极可以被视为反应物,将电子传递到生物膜电极的生物膜称为阳极,即电极还原生物膜,而从生物膜电极接受电子的生物膜称为阴极,即电极氧化生物膜。讨论了如何在生物电化学系统中生长这些电化学活性生物膜,以及实验设置中影响实验结果的关键选择。还描述了生物电化学系统中使用的反应器配置,并演示了如何使用选定的伏安技术研究生物电化学系统中的细胞外电子转移。最后,讨论了生物电化学系统中提出的电子转移机制的一些关键问题,并探讨了生物电化学系统作为能量转换和能量收集装置的前景。

相似文献

1
Electrochemically active biofilms: facts and fiction. A review.
Biofouling. 2012;28(8):789-812. doi: 10.1080/08927014.2012.710324.
3
Electrochemical and microbial community responses of electrochemically active biofilms to copper ions in bioelectrochemical systems.
Chemosphere. 2018 Apr;196:377-385. doi: 10.1016/j.chemosphere.2018.01.009. Epub 2018 Jan 5.
4
A framework for modeling electroactive microbial biofilms performing direct electron transfer.
Bioelectrochemistry. 2015 Dec;106(Pt A):194-206. doi: 10.1016/j.bioelechem.2015.03.010. Epub 2015 Apr 2.
6
Does bioelectrochemical cell configuration and anode potential affect biofilm response?
Biochem Soc Trans. 2012 Dec 1;40(6):1308-14. doi: 10.1042/BST20120130.
8
Inhibitory effect of cadmium(II) ion on anodic electrochemically active biofilms performance in bioelectrochemical systems.
Chemosphere. 2018 Nov;211:202-209. doi: 10.1016/j.chemosphere.2018.07.169. Epub 2018 Jul 28.
9
Hybridization of photoanode and bioanode to enhance the current production of bioelectrochemical systems.
Water Res. 2016 Oct 1;102:428-435. doi: 10.1016/j.watres.2016.06.061. Epub 2016 Jul 1.
10
Electroactive biofilms: how microbial electron transfer enables bioelectrochemical applications.
J Ind Microbiol Biotechnol. 2022 Jul 30;49(4). doi: 10.1093/jimb/kuac012.

引用本文的文献

2
Immobilized Saccharomyces cerevisiae viable cells for electrochemical biosensing of Cu(II).
Sci Rep. 2025 Jan 21;15(1):2678. doi: 10.1038/s41598-025-86702-8.
3
A directional electrode separator improves anodic biofilm current density in a well-mixed single-chamber bioelectrochemical system.
Enzyme Microb Technol. 2024 Oct;180:110502. doi: 10.1016/j.enzmictec.2024.110502. Epub 2024 Aug 22.
5
Chitosan-graphene quantum dot based active film as smart wound dressing.
J Drug Deliv Sci Technol. 2023 Feb;80. doi: 10.1016/j.jddst.2022.104093. Epub 2022 Dec 22.
6
A Nanofiber-Based Gas Diffusion Layer for Improved Performance in Air Cathode Microbial Fuel Cells.
Nanomaterials (Basel). 2023 Oct 21;13(20):2801. doi: 10.3390/nano13202801.
7
Microbiomics for enhancing electron transfer in an electrochemical system.
Front Microbiol. 2022 Jul 29;13:868220. doi: 10.3389/fmicb.2022.868220. eCollection 2022.
9
Kinetics and scale up of oxygen reducing cathodic biofilms.
Biofilm. 2021 Jun 18;3:100053. doi: 10.1016/j.bioflm.2021.100053. eCollection 2021 Dec.
10
Microbial fuel cells: a comprehensive review for beginners.
3 Biotech. 2021 May;11(5):248. doi: 10.1007/s13205-021-02802-y. Epub 2021 May 1.

本文引用的文献

1
Specific localization of the c-type cytochrome OmcZ at the anode surface in current-producing biofilms of Geobacter sulfurreducens.
Environ Microbiol Rep. 2011 Apr;3(2):211-7. doi: 10.1111/j.1758-2229.2010.00210.x. Epub 2010 Aug 26.
2
Microbiological and engineering aspects of biohydrogen production.
Indian J Microbiol. 2009 Mar;49(1):48-59. doi: 10.1007/s12088-009-0010-4. Epub 2009 Apr 21.
3
Physical constraints on charge transport through bacterial nanowires.
Faraday Discuss. 2012;155:43-62; discussion 103-14. doi: 10.1039/c1fd00098e.
4
Energy capture from thermolytic solutions in microbial reverse-electrodialysis cells.
Science. 2012 Mar 23;335(6075):1474-7. doi: 10.1126/science.1219330. Epub 2012 Mar 1.
5
A VOLTAMMETRIC FLAVIN MICROELECTRODE FOR USE IN BIOFILMS.
Sens Actuators B Chem. 2012 Jan 3;161(1):929-937. doi: 10.1016/j.snb.2011.11.066.
6
OptCom: a multi-level optimization framework for the metabolic modeling and analysis of microbial communities.
PLoS Comput Biol. 2012 Feb;8(2):e1002363. doi: 10.1371/journal.pcbi.1002363. Epub 2012 Feb 2.
7
Microscale geochemical gradients in Hanford 300 Area sediment biofilms and influence of uranium.
Water Res. 2012 Jan 1;46(1):227-34. doi: 10.1016/j.watres.2011.10.054. Epub 2011 Oct 31.
8
Oxygen reduction kinetics on graphite cathodes in sediment microbial fuel cells.
Phys Chem Chem Phys. 2011 Dec 28;13(48):21573-84. doi: 10.1039/c1cp23200b. Epub 2011 Nov 3.
9
Review--Interactions between diatoms and stainless steel: focus on biofouling and biocorrosion.
Biofouling. 2011 Nov;27(10):1109-24. doi: 10.1080/08927014.2011.629043.
10
Recent progress in electrodes for microbial fuel cells.
Bioresour Technol. 2011 Oct;102(20):9335-44. doi: 10.1016/j.biortech.2011.07.019. Epub 2011 Jul 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验