The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA.
Biofouling. 2012;28(8):789-812. doi: 10.1080/08927014.2012.710324.
This review examines the electrochemical techniques used to study extracellular electron transfer in the electrochemically active biofilms that are used in microbial fuel cells and other bioelectrochemical systems. Electrochemically active biofilms are defined as biofilms that exchange electrons with conductive surfaces: electrodes. Following the electrochemical conventions, and recognizing that electrodes can be considered reactants in these bioelectrochemical processes, biofilms that deliver electrons to the biofilm electrode are called anodic, ie electrode-reducing, biofilms, while biofilms that accept electrons from the biofilm electrode are called cathodic, ie electrode-oxidizing, biofilms. How to grow these electrochemically active biofilms in bioelectrochemical systems is discussed and also the critical choices made in the experimental setup that affect the experimental results. The reactor configurations used in bioelectrochemical systems research are also described and the authors demonstrate how to use selected voltammetric techniques to study extracellular electron transfer in bioelectrochemical systems. Finally, some critical concerns with the proposed electron transfer mechanisms in bioelectrochemical systems are addressed together with the prospects of bioelectrochemical systems as energy-converting and energy-harvesting devices.
本综述考察了用于研究微生物燃料电池和其他生物电化学系统中电化学活性生物膜中细胞外电子转移的电化学技术。电化学活性生物膜被定义为与导电表面(电极)交换电子的生物膜。根据电化学惯例,并认识到在这些生物电化学过程中电极可以被视为反应物,将电子传递到生物膜电极的生物膜称为阳极,即电极还原生物膜,而从生物膜电极接受电子的生物膜称为阴极,即电极氧化生物膜。讨论了如何在生物电化学系统中生长这些电化学活性生物膜,以及实验设置中影响实验结果的关键选择。还描述了生物电化学系统中使用的反应器配置,并演示了如何使用选定的伏安技术研究生物电化学系统中的细胞外电子转移。最后,讨论了生物电化学系统中提出的电子转移机制的一些关键问题,并探讨了生物电化学系统作为能量转换和能量收集装置的前景。