Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Sector 81, S.A.S. Nagar, Manauli PO 140306, Punjab, India.
Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Sector 81, S.A.S. Nagar, Manauli PO 140306, Punjab, India.
Biotechnol Adv. 2020 Mar-Apr;39:107468. doi: 10.1016/j.biotechadv.2019.107468. Epub 2019 Nov 7.
Electroactive microorganisms, which possess extracellular electron transfer (EET) capabilities, are the basis of microbial electrochemical technologies (METs) such as microbial fuel and electrolysis cells. These are considered for several applications ranging from the energy-efficient treatment of waste streams to the production of value-added chemicals and fuels, bioremediation, and biosensing. Various aspects related to the microorganisms, electrodes, separators, reactor design, and operational or process parameters influence the overall functioning of METs. The most fundamental and critical performance-determining factor is, however, the microorganism-electrode interactions. Modification of the electrode surfaces and microorganisms for optimizing their interactions has therefore been the major MET research focus area over the last decade. In the case of microorganisms, primarily their EET mechanisms and efficiencies along with the biofilm formation capabilities, collectively considered as microbial electroactivity, affect their interactions with the electrodes. In addition to electroactivity, the specific metabolic or biochemical functionality of microorganisms is equally crucial to the target MET application. In this article, we present the major strategies that are used to enhance the electroactivity and specific functionality of microorganisms pertaining to both anodic and cathodic processes of METs. These include simple physical methods based on the use of heat and magnetic field along with chemical, electrochemical, and growth media amendment approaches to the complex procedure-based microbial bioaugmentation, co-culture, and cell immobilization or entrapment, and advanced toolkit-based biofilm engineering, genetic modifications, and synthetic biology strategies. We further discuss the applicability and limitations of these strategies and possible future research directions for advancing the highly promising microbial electrochemistry-driven biotechnology.
具有细胞外电子传递 (EET) 能力的电活性微生物是微生物电化学技术 (METs) 的基础,如微生物燃料电池和电解池。这些技术被认为可应用于多种领域,从节能处理废水到生产有价值的化学品和燃料、生物修复和生物传感。与微生物、电极、分离器、反应器设计以及操作或工艺参数相关的各个方面都会影响 METs 的整体功能。然而,最基本和关键的性能决定因素是微生物-电极相互作用。因此,优化微生物和电极之间的相互作用一直是过去十年 MET 研究的主要重点领域。在微生物方面,主要是它们的 EET 机制和效率以及生物膜形成能力,通常被称为微生物电活性,会影响它们与电极的相互作用。除了电活性外,微生物的特定代谢或生化功能对于目标 MET 应用同样至关重要。在本文中,我们介绍了几种主要策略,这些策略用于提高与 METs 的阳极和阴极过程相关的微生物的电活性和特定功能。这些策略包括基于使用热和磁场的简单物理方法,以及化学、电化学和生长介质的修正方法,还有基于复杂程序的微生物生物增强、共培养和细胞固定或包埋的方法,以及基于先进工具包的生物膜工程、遗传修饰和合成生物学策略。我们进一步讨论了这些策略的适用性和局限性,以及推进极具前景的微生物电化学驱动生物技术的未来可能的研究方向。