Center for Computational Materials Science, Naval Research Laboratory, Washington, DC 20375-5341, USA.
Future Med Chem. 2012 Jul;4(11):1479-94. doi: 10.4155/fmc.12.92.
Progress in the quantum mechanics of biological molecules is being driven by computational advances. The notion of quantum kernels can be introduced to simplify the formalism of quantum mechanics, making it especially suitable for parallel computation of very large biological molecules. The essential idea is to mathematically break large biological molecules into smaller kernels that are calculationally tractable, and then to represent the full molecule by a summation over the kernels. The accuracy of the kernel energy method (KEM) is shown by systematic application to a great variety of molecular types found in biology. These include peptides, proteins, DNA and RNA. Examples are given that explore the KEM across a variety of chemical models, and to the outer limits of energy accuracy and molecular size. KEM represents an advance in quantum biology applicable to problems in medicine and drug design.
生物分子的量子力学的进展正受到计算技术进步的推动。量子核的概念可以被引入来简化量子力学的形式体系,使其特别适合于非常大的生物分子的并行计算。基本思想是从数学上将大分子分解成较小的核,这些核是可计算的,然后通过对核的求和来表示整个分子。核能量方法(KEM)的准确性通过系统地应用于生物学中发现的各种分子类型得到了证明。这些包括肽、蛋白质、DNA 和 RNA。通过各种化学模型和能量精度及分子尺寸的极限,给出了 KEM 的示例。KEM 代表了量子生物学的一项进步,适用于医学和药物设计中的问题。