Howard Hughes Medical Institute, Department of Biomedical Engineering, and Center for BioDynamics, Boston University, Boston, MA 02215, USA.
Cell. 2012 Aug 3;150(3):647-58. doi: 10.1016/j.cell.2012.05.045.
Eukaryotic transcription factors (TFs) perform complex and combinatorial functions within transcriptional networks. Here, we present a synthetic framework for systematically constructing eukaryotic transcription functions using artificial zinc fingers, modular DNA-binding domains found within many eukaryotic TFs. Utilizing this platform, we construct a library of orthogonal synthetic transcription factors (sTFs) and use these to wire synthetic transcriptional circuits in yeast. We engineer complex functions, such as tunable output strength and transcriptional cooperativity, by rationally adjusting a decomposed set of key component properties, e.g., DNA specificity, affinity, promoter design, protein-protein interactions. We show that subtle perturbations to these properties can transform an individual sTF between distinct roles (activator, cooperative factor, inhibitory factor) within a transcriptional complex, thus drastically altering the signal processing behavior of multi-input systems. This platform provides new genetic components for synthetic biology and enables bottom-up approaches to understanding the design principles of eukaryotic transcriptional complexes and networks.
真核转录因子 (TFs) 在转录网络中执行复杂且组合式的功能。在此,我们提出了一个综合框架,使用人工锌指,即在许多真核 TFs 中发现的模块化 DNA 结合域,来系统构建真核转录功能。利用该平台,我们构建了一个正交合成转录因子 (sTF) 的文库,并使用这些因子在酵母中构建合成转录回路。我们通过合理调整一组关键组件属性(例如 DNA 特异性、亲和力、启动子设计、蛋白-蛋白相互作用)来设计复杂的功能,例如可调输出强度和转录协同作用。我们表明,对这些属性的细微扰动可以在转录复合物内将单个 sTF 在不同角色(激活因子、协同因子、抑制因子)之间转换,从而极大地改变多输入系统的信号处理行为。该平台为合成生物学提供了新的遗传组件,并为从下至上的方法理解真核转录复合物和网络的设计原则提供了可能。