Center for Biomedical Imaging and Bioinformatics, School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
J Digit Imaging. 2013 Apr;26(2):287-301. doi: 10.1007/s10278-012-9519-x.
Wireless capsule endoscopy (WCE) is a novel technology aiming for investigating the diseases and abnormalities in small intestine. The major drawback of WCE examination is that it takes a long time to examine the whole WCE video. In this paper, we present a new reduction scheme for WCE video to reduce the examination time. To achieve this task, a WCE video motion model is proposed. Under this motion model, the WCE imaging motion is estimated in two stages (the coarse level and the fine level). In the coarse level, the WCE camera motion is estimated with a combination of Bee Algorithm and Mutual Information. In the fine level, the local gastrointestinal tract motion is estimated with SIFT flow. Based on the result of WCE imaging motion estimation, the reduction scheme preserves key images in WCE video with scene changes. From experimental results, we notice that the proposed motion model is suitable for the motion estimation in successive WCE images. Through the comparison with APRS and FCM-NMF scheme, our scheme can produce an acceptable reduction sequence for browsing and examination.
无线胶囊内镜(WCE)是一种旨在检查小肠疾病和异常的新技术。WCE 检查的主要缺点是检查整个 WCE 视频需要很长时间。在本文中,我们提出了一种新的 WCE 视频缩减方案,以减少检查时间。为了实现这一任务,我们提出了一种 WCE 视频运动模型。在该运动模型下,WCE 成像运动在两个阶段(粗级和细级)进行估计。在粗级,WCE 相机运动使用 Bee 算法和互信息相结合进行估计。在细级,使用 SIFT 流估计局部胃肠道运动。基于 WCE 成像运动估计的结果,缩减方案在有场景变化的 WCE 视频中保留关键图像。从实验结果中,我们注意到,所提出的运动模型适用于连续 WCE 图像的运动估计。通过与 APRS 和 FCM-NMF 方案的比较,我们的方案可以生成一个可接受的浏览和检查的缩减序列。