Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, Université Paris-Est, 61 avenue du Général de Gaulle, 94010, Créteil Cedex, France.
Biomech Model Mechanobiol. 2013 Jun;12(3):533-53. doi: 10.1007/s10237-012-0422-7. Epub 2012 Aug 7.
Canalicular fluid flow is acknowledged to play a major role in bone functioning, allowing bone cells' metabolism and activity and providing an efficient way for cell-to-cell communication. Bone canaliculi are small canals running through the bone solid matrix, hosting osteocyte's dendrites, and saturated by an interstitial fluid rich in ions. Because of the small size of these canals (few hundred nanometers in diameter), fluid flow is coupled with electrochemical phenomena. In our previous works, we developed a multi-scale model accounting for coupled hydraulic and chemical transport in the canalicular network. Unfortunately, most of the physical and geometrical information required by the model is hardly accessible by nowadays experimental techniques. The goal of this study was to numerically assess the influence of the physical and material parameters involved in the canalicular fluid flow. The focus was set on the electro-chemo-mechanical features of the canalicular milieu, hopefully covering any in vivo scenario. Two main results were obtained. First, the most relevant parameters affecting the canalicular fluid flow were identified and their effects quantified. Second, these findings were given a larger scope to cover also scenarios not considered in this study. Therefore, this study gives insight into the potential interactions between electrochemistry and mechanics in bone and provides the rational for further theoretical and experimental investigations.
目前,人们普遍认为,管腔液流在骨骼功能中起着重要作用,它可以促进骨细胞的新陈代谢和活动,并为细胞间的通讯提供有效的途径。骨小管是贯穿于骨基质的小通道,容纳着骨细胞的树突,并充满富含离子的间质液。由于这些管道的直径很小(几百纳米),因此流体流动与电化学现象相关联。在我们之前的工作中,我们开发了一种多尺度模型,用于描述管腔网络中的水力和化学传输的耦合。不幸的是,模型所需的大部分物理和几何信息都难以通过当前的实验技术获取。本研究的目的是数值评估涉及管腔液流的物理和材料参数的影响。研究重点放在管腔环境的电-化学-机械特性上,希望涵盖任何体内情况。得到了两个主要结果。首先,确定了影响管腔液流的最相关参数,并对其影响进行了量化。其次,将这些发现的范围扩大到也涵盖了本研究中未考虑的情况。因此,本研究深入了解了骨骼中电化学和力学之间的潜在相互作用,并为进一步的理论和实验研究提供了依据。