Suppr超能文献

直接采样囊性纤维化肺组织表明,基于 DNA 的上呼吸道标本分析可能会对肺部微生物群产生误判。

Direct sampling of cystic fibrosis lungs indicates that DNA-based analyses of upper-airway specimens can misrepresent lung microbiota.

机构信息

Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA.

出版信息

Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13769-74. doi: 10.1073/pnas.1107435109. Epub 2012 Aug 7.

Abstract

Recent work using culture-independent methods suggests that the lungs of cystic fibrosis (CF) patients harbor a vast array of bacteria not conventionally implicated in CF lung disease. However, sampling lung secretions in living subjects requires that expectorated specimens or collection devices pass through the oropharynx. Thus, contamination could confound results. Here, we compared culture-independent analyses of throat and sputum specimens to samples directly obtained from the lungs at the time of transplantation. We found that CF lungs with advanced disease contained relatively homogenous populations of typical CF pathogens. In contrast, upper-airway specimens from the same subjects contained higher levels of microbial diversity and organisms not typically considered CF pathogens. Furthermore, sputum exhibited day-to-day variation in the abundance of nontypical organisms, even in the absence of clinical changes. These findings suggest that oropharyngeal contamination could limit the accuracy of DNA-based measurements on upper-airway specimens. This work highlights the importance of sampling procedures for microbiome studies and suggests that methods that account for contamination are needed when DNA-based methods are used on clinical specimens.

摘要

最近使用非培养方法的研究表明,囊性纤维化(CF)患者的肺部携带有大量通常与 CF 肺部疾病无关的细菌。然而,在活体受试者中采集肺部分泌物需要使咳出的标本或采集装置通过口咽。因此,污染可能会混淆结果。在这里,我们比较了咽喉和痰液标本的非培养分析与移植时直接从肺部获得的样本。我们发现,患有晚期疾病的 CF 肺部含有相对同质的典型 CF 病原体种群。相比之下,来自同一受试者的上呼吸道标本含有更高水平的微生物多样性和通常不被认为是 CF 病原体的生物。此外,即使在没有临床变化的情况下,痰液中不典型生物体的丰度也存在日常变化。这些发现表明,口咽污染可能会限制基于 DNA 的上呼吸道标本测量的准确性。这项工作强调了微生物组研究中采样程序的重要性,并表明在使用基于 DNA 的方法对临床标本进行分析时,需要考虑到污染的方法。

相似文献

1
Direct sampling of cystic fibrosis lungs indicates that DNA-based analyses of upper-airway specimens can misrepresent lung microbiota.
Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13769-74. doi: 10.1073/pnas.1107435109. Epub 2012 Aug 7.
3
Assessment of airway microbiota and inflammation in cystic fibrosis using multiple sampling methods.
Ann Am Thorac Soc. 2015 Feb;12(2):221-9. doi: 10.1513/AnnalsATS.201407-310OC.
4
Reliability of quantitative real-time PCR for bacterial detection in cystic fibrosis airway specimens.
PLoS One. 2010 Nov 30;5(11):e15101. doi: 10.1371/journal.pone.0015101.
5
Different next generation sequencing platforms produce different microbial profiles and diversity in cystic fibrosis sputum.
J Microbiol Methods. 2016 Nov;130:95-99. doi: 10.1016/j.mimet.2016.09.002. Epub 2016 Sep 5.
7
Upper versus lower airway microbiome and metagenome in children with cystic fibrosis and their correlation with lung inflammation.
PLoS One. 2019 Sep 19;14(9):e0222323. doi: 10.1371/journal.pone.0222323. eCollection 2019.
9
Culture enriched molecular profiling of the cystic fibrosis airway microbiome.
PLoS One. 2011;6(7):e22702. doi: 10.1371/journal.pone.0022702. Epub 2011 Jul 28.
10

引用本文的文献

1
Direct assessment of airway microbiota in primary ciliary dyskinesia end-stage lung disease.
ERJ Open Res. 2025 Jun 9;11(3). doi: 10.1183/23120541.01193-2024. eCollection 2025 May.
2
Characteristics of upper and lower respiratory tract microbiota after lung transplantation.
Respir Res. 2025 Apr 25;26(1):160. doi: 10.1186/s12931-025-03235-4.
3
Effect of hyperglycemia on lung microbiota and treatment outcome in pulmonary tuberculosis: A scoping review.
F1000Res. 2024 Dec 20;13:1543. doi: 10.12688/f1000research.159555.1. eCollection 2024.
4
Microbiosis in lung allotransplantation and xenotransplantation: State of the art and future perspective.
Health Care Sci. 2022 Sep 13;1(2):119-128. doi: 10.1002/hcs2.15. eCollection 2022 Oct.
7
Lung Microbiome as a Treatable Trait in Chronic Respiratory Disorders.
Lung. 2023 Oct;201(5):455-466. doi: 10.1007/s00408-023-00645-3. Epub 2023 Sep 26.
9
Upper airway microbiota development in infants with cystic fibrosis diagnosed by newborn screen.
J Cyst Fibros. 2023 Jul;22(4):644-651. doi: 10.1016/j.jcf.2023.04.017. Epub 2023 May 1.

本文引用的文献

1
Decade-long bacterial community dynamics in cystic fibrosis airways.
Proc Natl Acad Sci U S A. 2012 Apr 10;109(15):5809-14. doi: 10.1073/pnas.1120577109. Epub 2012 Mar 26.
2
True microbiota involved in chronic lung infection of cystic fibrosis patients found by culturing and 16S rRNA gene analysis.
J Clin Microbiol. 2011 Dec;49(12):4352-5. doi: 10.1128/JCM.06092-11. Epub 2011 Oct 19.
3
Massively parallel rRNA gene sequencing exacerbates the potential for biased community diversity comparisons due to variable library sizes.
Environ Microbiol. 2012 Feb;14(2):285-90. doi: 10.1111/j.1462-2920.2011.02550.x. Epub 2011 Sep 19.
4
Spatial distribution of microbial communities in the cystic fibrosis lung.
ISME J. 2012 Feb;6(2):471-4. doi: 10.1038/ismej.2011.104. Epub 2011 Jul 28.
5
Target region selection is a critical determinant of community fingerprints generated by 16S pyrosequencing.
PLoS One. 2011;6(6):e20956. doi: 10.1371/journal.pone.0020956. Epub 2011 Jun 29.
6
Diversity of the human skin microbiome early in life.
J Invest Dermatol. 2011 Oct;131(10):2026-32. doi: 10.1038/jid.2011.168. Epub 2011 Jun 23.
7
The airway microbiome in cystic fibrosis and implications for treatment.
Curr Opin Pediatr. 2011 Jun;23(3):319-24. doi: 10.1097/MOP.0b013e32834604f2.
10
Massive parallel 16S rRNA gene pyrosequencing reveals highly diverse fecal bacterial and fungal communities in healthy dogs and cats.
FEMS Microbiol Ecol. 2011 May;76(2):301-10. doi: 10.1111/j.1574-6941.2011.01058.x. Epub 2011 Feb 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验