Suppr超能文献

创伤管理中的决策支持:预测呼吸机相关性肺炎的潜在病例

Decision support in trauma management: predicting potential cases of Ventilator Associated Pneumonia.

作者信息

Pearl Adrian, Bar-Or David

机构信息

Trauma Research Department, Swedish Medical Center, Englewood, CO, USA.

出版信息

Stud Health Technol Inform. 2012;180:305-9.

Abstract

Ventilator Associated Pneumonia (VAP) is a complication of intubated trauma patients and a leading cause in Intensive Care Unit (ICU) mortality. Since early diagnosis, by specimen culture takes days to complete, an overuse of broad spectrum antibiotics is the usual treatment. As a result there is the risk of developing antibiotic resistant strains. Using an Artificial Neural Network (ANN) derived model to predict those at risk would result in reduced risk of resistant strains, a lowering of mortality rates and considerable savings in treatment costs. Artificial Neural Networks work well on classification problems, using feed-forward/back propagation methodology. Using the National Trauma Data Bank (V6.2) data files, Tiberius Software created the ANN models. Best models were identified by their Gini co-efficient, ability to predict the complication outcome selected, and their RMSE scores. The model ensemble for the complications recorded in the registry were determined, variables ranked and model accuracy recorded. Results show an effective model, able to predict to 85% of those likely to contract VAP and similar figures for those unlikely to contract VAP. This equates to 1 in 10 patients being missed, and 1 in 10 falsely being flagged for treatment. Important variables in model development are not related to physiological factors, but injury status and the treatment received (intubation and expected ICU stay more than 2 days). Application of a predictive model could reduce the number of false positives being treated in an ICU and identify those most at risk, thereby lowering treatment costs and potentially helping improve mortality rates.

摘要

呼吸机相关性肺炎(VAP)是气管插管创伤患者的一种并发症,也是重症监护病房(ICU)死亡的主要原因。由于通过标本培养进行早期诊断需要数天时间才能完成,因此通常的治疗方法是过度使用广谱抗生素。结果存在产生抗生素耐药菌株的风险。使用人工神经网络(ANN)衍生模型来预测有风险的患者,将降低耐药菌株的风险、降低死亡率并大幅节省治疗成本。人工神经网络使用前馈/反向传播方法,在分类问题上表现良好。Tiberius软件公司利用国家创伤数据库(V6.2)的数据文件创建了人工神经网络模型。通过基尼系数、预测所选并发症结果的能力及其均方根误差(RMSE)分数来确定最佳模型。确定了登记册中记录的并发症的模型集成,对变量进行了排序并记录了模型准确性。结果显示了一个有效的模型,能够预测85%可能感染VAP的患者以及85%不太可能感染VAP的患者。这相当于每10名患者中有1名被漏诊,每10名患者中有1名被错误标记为需要治疗。模型开发中的重要变量与生理因素无关,而是与损伤状况和接受的治疗(插管以及预期ICU住院时间超过2天)有关。应用预测模型可以减少ICU中接受治疗的假阳性患者数量,并识别出风险最高的患者,从而降低治疗成本并可能有助于提高死亡率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验