Axe Neurosciences du Centre de recherche du CHUQ, Université Laval, Québec, QC, Canada.
Am J Physiol Regul Integr Comp Physiol. 2012 Oct 15;303(8):R834-42. doi: 10.1152/ajpregu.00260.2012. Epub 2012 Aug 8.
The essential role of the median preoptic nucleus (MnPO) in the integration of chemosensory information associated with the hydromineral state of the rat relies on the presence of a unique population of sodium (Na+) sensor neurons. Little is known about the intrinsic properties of these neurons; therefore, we used whole cell recordings in acute brain slices to determine the electrical fingerprints of this specific neural population of rat MnPO. The data collected from a large sample of neurons (115) indicated that the Na+ sensor neurons represent a majority of the MnPO neurons in situ (83%). These neurons displayed great diversity in both firing patterns induced by transient depolarizing current steps and rectifying properties activated by hyperpolarizing current steps. This diversity of electrical properties was also present in non-Na+ sensor neurons. Subpopulations of Na+ sensor neurons could be distinguished, however, from the non-Na+ sensor neurons. The firing frequency was higher in Na+ sensor neurons, showing irregular spike discharges, and the amplitude of the time-dependent rectification was weaker in the Na+ sensor neurons than in non-Na+ sensor neurons. The diversity among the electrical properties of the MnPO neurons contrasts with the relative function homogeneity (Na+ sensing). However, this diversity might be correlated with a variety of direct synaptic connections linking the MnPO to different brain areas involved in various aspects of the restoration and conservation of the body fluid homeostasis.
中脑视前核(MnPO)在整合与大鼠水盐状态相关的化学感觉信息方面起着至关重要的作用,这依赖于存在一类独特的钠离子(Na+)传感器神经元。目前,人们对这些神经元的内在特性知之甚少;因此,我们使用急性脑切片中的全细胞膜片钳记录来确定大鼠 MnPO 中这一特定神经元群体的电指纹。从大量神经元(115 个)中收集的数据表明,Na+传感器神经元代表了原位 MnPO 神经元的大多数(83%)。这些神经元在由短暂去极化电流步骤诱导的放电模式和由超极化电流步骤激活的整流特性方面表现出很大的多样性。这种电特性的多样性也存在于非 Na+传感器神经元中。然而,可以区分 Na+传感器神经元和非 Na+传感器神经元的亚群。Na+传感器神经元的放电频率更高,表现出不规则的尖峰放电,并且时间依赖性整流的幅度在 Na+传感器神经元中比在非 Na+传感器神经元中更弱。MnPO 神经元的电特性多样性与相对功能均一性(Na+ 感应)形成对比。然而,这种多样性可能与 MnPO 与参与体液平衡恢复和保护的不同脑区之间的各种直接突触连接有关。