Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2.
J Biol Dyn. 2007 Oct;1(4):320-46. doi: 10.1080/17513750701605614.
A model is introduced for the transmission dynamics of a vector-borne disease with two vector strains, one wild and one pathogen-resistant; resistance comes at the cost of reduced reproductive fitness. The model, which assumes that vector reproduction can lead to the transmission or loss of resistance (reversion), is analyzed in a particular case with specified forms for the birth and force of infection functions. The vector component can have, in the absence of disease, a coexistence equilibrium where both strains survive. In the case where reversion is possible, this coexistence equilibrium is globally asymptotically stable when it exists. This equilibrium is still present in the full vector-host system, leading to a reduction of the associated reproduction number, thereby making elimination of the disease more feasible. When reversion is not possible, there can exist an additional equilibrium with only resistant vectors.
引入了一个具有两种媒介菌株(一种野生型和一种病原体抗性)的虫媒传染病传播动力学模型;抗性是以降低生殖适应性为代价的。该模型假设媒介繁殖可能导致抗性的传播或丧失(回复),并在特定情况下使用特定形式的出生率和感染力函数进行了分析。在没有疾病的情况下,媒介成分可以存在共存平衡点,两种菌株都能存活。在回复是可能的情况下,当存在时,这个共存平衡点是全局渐近稳定的。这个平衡点仍然存在于完整的向量-宿主系统中,导致相关繁殖数减少,从而使疾病的消除更加可行。当回复不可能时,可能存在只有抗性媒介的附加平衡点。